Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tomorrow's life-saving medications may currently be living at the bottom of the sea

30.01.2013
OHSU researchers, in partnership with scientists from several other institutions, have published two new research papers that signal how the next class of powerful medications may currently reside at the bottom of the ocean. In both cases, the researchers were focused on ocean-based mollusks – a category of animal that includes snails, clams and squid and their bacterial companions.

Sea life studies aid researchers in several ways, including the development of new medications and biofuels. Because many of these ocean animal species have existed in harmony with their bacteria for millions of years, these benign bacteria have devised molecules that can affect body function without side effects and therefore better fight disease.

To generate these discoveries, a research partnership called the Philippine Mollusk Symbiont International Cooperative Biodiversity Group was formed. As the name suggests, the group specifically focuses on mollusks, a large phylum of invertebrate animals, many of which live under the sea. Margo Haygood, Ph.D., an OHSU marine microbiologist, leads the group, with partners at the University of the Philippines, the University of Utah, The Academy of Natural Sciences in Philadelphia and Ocean Genome Legacy. Both of these newly published papers are the result of the efforts of this research group.

Here are brief summaries of the two studies:

Shipworms: The source of a new antibiotic
Published in the current edition of the journal Proceedings of the National Academy of Sciences

The paper focuses on a unique animal called a shipworm, which despite its name is not a worm. Shipworms are mollusks and are clam-like creatures that use their shells as drills and feed on wood by burrowing into the wood fibers. They are best known for affixing themselves to the sides of wooden ships. Over time, their wood feeding causes serious damage to the hull of those ships.

The research team initially focused on shipworms because the animals' creative use of bacteria to convert wood — a poor food source lacking proteins or nitrogen — into a suitable food source where the animal can both live and feed.

This research revealed that one form of bacteria utilized by shipworms secretes a powerful antibiotic, which may hold promise for combatting human diseases.

"The reason why this line of research is so critical is because antibiotic resistance is a serious threat to human health," said Margo Haygood, Ph.D., a member of the OHSU Institute of Environmental Health and a professor of science and engineering in the OHSU School of Medicine.

"Antibiotics have helped humans battle infectious diseases for over 70 years. However, the dangerous organisms these medications were designed to protect us against have adapted due to widespread use. Without a new class of improved antibiotics, older medications are becoming less and less effective and we need to locate new antibiotics to keep these diseases at bay. Bacteria that live in harmony with animals are a promising source. "

Cone snails: Another possible yet surprising source for new medicines
Published in the current edition of the journal Chemistry and Biology
A team led by researchers from the University of Utah, and including OHSU and the University of the Philippines researchers, took part in a separate study of cone snails collected in the Philippines. Cone snails are also mollusks. There have been few previous studies to determine if bacteria associated with these snails might assist in drug development. This is because the snails have thick shells and they can also defend themselves through the use of toxic venoms. Because of the existence of these significant defensive measures, it was assumed that the bacteria they carry do not have to produce additional chemical defenses that might also translate into human medications. The latest research shows that this previous assumption is incorrect.

The research demonstrated how bacteria carried by cone snails produce a chemical that is neuroactive, meaning that it impacts the function of nerve cells, called neurons, in the brain. Such chemicals have promise for treatment of pain.

"Mollusks with external shells, like the cone snail, were previously overlooked in the search for new antibiotics and other medications," said, Eric Schmidt, Ph.D., a biochemist at the university of Utah and lead author of the article.

"This discovery tells us that these animals also produce compounds worth studying. It's hoped that these studies may also provide us with valuable knowledge that will help us combat disease."

About the Philippine Mollusk Symbiont International Cooperative Biodiversity Group

The Philippine Mollusk Symbiont International Cooperative Biodiversity Group links a biodiversity survey of marine mollusks with enzyme and drug discovery aimed at bacterial symbionts of mollusks. Mollusks constitute the most diverse marine life groups, occupying virtually every possible ecological niche. The diversity of microbes associated with mollusks is equally vast.

The group focuses on training, conservation, and the development of drug discovery and biofuels programs within the Philippines. The project is led by Margo Haygood, marine microbiologist, Oregon Heath & Science University, in association with Gisela Concepcion, marine natural products chemist, Marine Science Institute, University of the Philippines; Baldomero Olivera, biochemist, and Eric Schmidt, natural products chemist and biochemist, both at the University of Utah; Gary Rosenberg, evolutionary biologist, Academy of Natural Sciences in Philadelphia; and Daniel Distel, marine microbiologist, Ocean Genome Legacy.

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon's only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children's Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university's social mission. OHSU's Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer's disease and new treatments for Parkinson's disease, multiple sclerosis and stroke. OHSU's Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>