Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Know your tomatoes

16.05.2011
Assessing the chemical diversity of genetically modified organisms is an important first step for evaluating their safety

Genetically modified (GM) tomatoes look much the same as traditional varieties. But are they? By comparing the chemical diversity of strains of GM tomatoes with a control strain and traditional reference cultivars, a research team in Japan has developed a way to distinguish between them[1].

Consumers need to be confident that GM tomatoes are safe, so initial risk assessments must show that they are ‘substantially equivalent’ to traditional varieties in their chemical make-up. Scientists can then focus on those chemicals, or ‘metabolites’, found only in particular GM varieties for toxicological testing.

As a case study, the team—led by Kazuki Saito of the RIKEN Plant Science Center in Yokohama—focused on GM tomatoes over-expressing a foreign gene encoding miraculin, a substance normally found in a tropical plant but not tomatoes. Miraculin is a glycoprotein—a protein with short carbohydrate side chains. It has the remarkable ability to make sour foods taste sweet. “Miraculin has fewer calories than sugar and has potential as a natural sweetener and flavor enhancer,” Saito notes.

Metabolism refers to the processes involved in maintaining life, including the building and breakdown of proteins, nucleic acids and carbohydrates. Complex metabolic pathways involve many enzymes and the chemical constituents of cells and tissues are in constant flux.

Whereas genomics provides an overview of the genetic composition of an organism, ‘metabolomics’ can give a snapshot of biochemical status. “We applied metabolomic techniques to compare the chemical diversity of GM tomatoes to that of traditional varieties,” Saito explains. Because there is currently no single technique for separating and characterizing all metabolites, the researchers used a range of metabolomic techniques to assess the chemical diversity of GM tomatoes over-expressing miraculin.

“Our multi-platform approach allowed us to identify metabolites in both types of tomato in an automated manner, and to evaluate variation between them using robust statistical methods,” says Saito.

The researchers found that the ripening GM tomatoes had a reproducible metabolic signature, and that over 92% of their metabolites showed an acceptable range of variation similar to that of the traditional varieties.

“Our aim was not to show that the GM tomatoes are safe, but rather to examine the chemical diversity of GM tomatoes compared with natural variants, and to possibly narrow down the list of potentially problematic metabolites as a guide to further investigation,” explains Saito.

The team believes that their multi-platform approach could be applied to any GM organism as a start to objective risk assessment.

The corresponding author for this highlight is based at the Metabolomics Research Division, RIKEN Plant Science Center

Journal information

[1] Kusano, M., Redestig, H., Hirai, T., Oikawa, A., Matsuda, F., Fukushima, A., Arita, M., Watanabe, S., Yano, M., Hiwasa-Tanse, K., Ezura, H. & Saito, K. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PLoS ONE 6, e16989 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>