Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toll-like receptors play role in brain damage in newborns

23.11.2011
Two out of every thousand babies are at risk of brain damage in connection with birth. Researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have identified mechanisms behind these injuries, which could lead to better treatment and a richer life for the infants affected.

Roughly two in every thousand babies are at risk of suffering brain damage as a result of events before, during and after delivery. Infections in the blood or a reduced supply of oxygen and blood can lead to inflammation in the brain, causing injury. This type of brain damage, which is much more common in premature babies, can result in neurological problems such as cerebral palsy, learning difficulties and epilepsy.

Toll-like receptors

Researchers at the University of Gothenburg’s Sahlgrenska Academy have now found that toll-like receptors (TLRs) in the innate immune system play a major role in the state of the brain in newborns. The discovery could lead to better treatment and a richer life for many children.

Key role in the immature brain

Research into TLRs, which was rewarded with this year’s Nobel Prize in Physiology or Medicine, has previously shown that these receptors are involved in stroke-related brain damage in adults. The researchers in Gothenburg have now shown that TLRs are also present in the immature brain and play an important role there.

“By understanding the role of toll-like receptors in the inflammatory process following brain injury, we hope eventually to find more effective treatment strategies,” says Linnea Stridh from the Sahlgrenska Academy, who presents the results in her thesis.

Simulated brain injuries

Stridh and her colleagues used mice in their studies to simulate the brain injuries seen in newborn babies. They found that special TLRs contribute to brain damage following hypoxia, where the brain is starved of oxygen.
“An infection can activate these receptors, making the brain more sensitive to hypoxia, resulting in worse brain damage,” Stridh explains. “If these signals are blocked, the degree of brain damage is reduced.”

Barrier opened

In her thesis, Stridh also looks at a protein called occludin, which has the role of gluing together cells in the blood-brain barrier.

“Our results show that there is a reduction in occludin at a genetic level following infection,” she explains. “This can lead to the opening of the barrier, making it easier for inflammatory molecules and cells in the blood to get into the brain and cause inflammation.”

The thesis “Inflammation in the immature brain; the role of toll-like receptors” was defended on 11 November 2011. neuro

TOLL-LIKE RECEPTORS
Toll-like receptors (TLRs) are found on both the outside and inside of cells where they specialise in detecting specific molecules from hostile microorganisms. When a TLR detects a microorganism, the innate immune system is activated, causing inflammation to destroy the microorganism. Research on Toll-like receptors was awarded with the Nobel Prize in medicine 2012.

Bibliographi data:
Title: Regulation of Toll-like receptor 1 and -2 in neonatal mouse brain after hypoxia-ischemia
Authors: Linnea Stridh, Peter L.P. Smith, Andrew S Naylor, Xiaoyang Wang and Carina Mallard J.
Journal: Neuroinflammation 2011, 8:45
Link to article: http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uid...
For more information, please contact: Linnea Stridh
Telephone: +46 (0)31 7863377
Mobile: +46 (0)705 764718
E-mail: linnea.stridh@neuro.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/27809

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>