Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tokyo Tech researchers produce new photoactive micelles

31.01.2013
Researchers at Tokyo Institute of Technology have produced a new form of photoactive micelles with potential applications in photofunctional dyes and sensors. The research was published in Angewandte Chemie recently.

A new form of micelle, which is composed of detergents with bent aromatic panels, has been created by Michito Yoshizawa and his colleagues at Tokyo Institute of Technology. Unlike traditional micelles, the new ‘aromatic micelles’ are photoactive, and capable of encapsulating dye molecules and showing unusual fluorescence in aqueous solutions.


Figure 1: Schematic representation of spherical assemblies. a) A standard micelle composed of string-like detergents. b) An aromatic micelle composed of new detergents with bent aromatic panels.


Figure 2: a) Encapsulation of dye molecules (NR and DCM) by the aromatic micelle in aqueous solution. b) Molecular modeling of the aromatic micelle. c) Fluorescence spectra of the micelle, micelle-NR, and micelle-DCM complexes upon irradiation at 370 nm.

“The present micelles might be suitable for potential applications in the fields of photofunctional dyes, sensors, and materials owing to their ability to accommodate dye molecules and their efficient host-guest energy transfer in aqueous media,” explain the researchers. They also emphasise the straightforward synthesis, aqueous green chemistry and high stability of the aromatic micelles.

Micelles are used in a range of dissolution, separation, and preservation applications and form the basis of soap detergents. They assemble from string-like molecules in aqueous solutions as a result of different chemical components (hydrophobic and hydrophilic moieties) at either end of the strings. Michito Yoshizawa and Kei Kondo et al. replaced the hydrophobic part of the string with large aromatic panels, which are known to be photochemically active.

The new aromatic micelles form two nanometer-sized capsules that have a cavity surrounded by large aromatic panels. The selective encapsulation of fluorescent dye molecules to form photoactive guest-host complexes is the first demonstration of efficient fluorescence energy transfer from the host framework to dye ‘guest molecules’.
Background

The micelles
Micelles are typically made of string-like molecules, where one end of the string attracts water molecules (hydrophilic) and the other end repels them (hydrophobic). In aqueous solution these strings form spherical assembles like spoke on a dandelion puffball with the hydrophobic ends at the centre. These typical micelles are not photoactive, which places limitations on their potential applications.

Aromatic molecules
Aromatic molecules are carbon-based molecules with six-membered rings that have a particular type of electronic configuration, which leads to a number of specific properties. Large aromatic molecules are planar and photo- and electrochemically active, which may make them useful in applications such as liquid crystal displays. However they do not readily form discrete micelle-like assemblies.
Producing aromatic micelles
To create the aromatic micelles, the researchers made new detergents with bent aromatic panels, comprising two anthracene moieties with a spacer to connect them. The spacer was functionalized with two hydrophilic groups. The steric repulsion between the anthracene and spacer moieties gives the molecule its bent shape. With the hydrophobic bent panels and the hydrophilic groups, the detergent molecules form spherical assemblies in aqueous solution. The assembly is driven by stacking of the hydrophobic aromatic panels.
Aromatic micelle properties
The aromatic micelles had a cavity surrounded by anthracene shells with a diameter of approximately one nanometer. The shell emitted blue-green fluorescence (~500 nm). The aromatic micelles were also extremely robust. Atomic force microscopy (AFM) images showed the spherical structures persisted even after complete evaporation of water.

Dye encapsulation
The researchers demonstrated the encapsulation of two well known hydrophobic dyes, Nile red (NR) and DCM by the aromatic micelles. Stirring a suspension of the dyes in an aqueous solution of the aromatic micelles for an hour produced a clear solution. Spectroscopic observations revealed changes to the light absorption and emission properties of the micelle following encapsulation of the dyes. Strong red emission (~640 nm) from the encapsulated DCM was observed upon irradiation of the micelle-DCM complex at 370 nm. In contrast, the irradiation of DCM in the absence of the micelle at 370 nm showed almost no emission. Measurements of the fluorescence quenching profile of the anthracene panels in the micelles indicated the energy transfer efficiency as high as 97%. The work is the first demonstration of efficient fluorescent resonance energy transfer from discrete self-assembled hosts.
Next steps
The authors expect that the functionalization of the aromatic shells as well as the use of other aromatic panels will lead to new aromatic micelles with a wide range of fluorescent properties. Studies along these lines are currently in progress in their research group.

Further information
Yukiko Tokida, Miwako Kato
Center for Public Information, Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975 Fax: +81-3-5734-3661

About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.
Website: http://www.titech.ac.jp/english/

Journal information
Reference
K. Kondo, A. Suzuki, M. Akita, and M. Yoshizawa, “Micelle-like Molecular Capsules with Anthracene Shells as Photoactive Hosts” Angewandte Chemie International Edition, 2013, DOI: 10.1002/anie.201208643 (Article first published online: 23 Jan 2013).

Funding information

Support
This research was supported by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for Next-Generation World-Leading Researchers” and by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) through a Grant-in-Aid for Scientific Research on Innovative Areas (“Coordination Programming”).

Adarsh Sandhu | Research asia research news
Further information:
http://www.titech.ac.jp/english/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>