Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Together we are unpredictable: why sailfish hunt more successfully as a group

13.02.2017

Sailfish are large oceanic predatory fish that attack their prey with their long, sharp bills. When hunting, individuals increase their success rate by specialising in one attacking side, as a team led by researcher Dr. Ralf Kurvers from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) has now been able to show. The crucial factor: Sailfish always hunt in groups containing roughly the same number of individuals that attack from the right as those that attack from the left. In this way, their prey is unable to predict from which side the attack will occur.

Predators and their prey evolve together: it is vital for predators to develop effective hunting strategies, whereas the prey species is intent on evading its attackers. An international team of researchers involving IGB has investigated the predator-prey relationship between sailfish (Istiophorus platypterus) and sardines (Sardinella aurita).


A sailfish approaching its prey.

Photo: Rodrigo Friscione

“When attacking, most sailfish specialise in attacks from either the left or the right, enabling them to attack more effectively,” reported Dr. Ralf Kurvers, lead author of the study whose results have now been published in the journal Current Biology.

The researcher and his team discovered that specialisation in attacking from the left or right – referred to technically as laterality – has its advantages in hunting. In fact, the more strongly an individual was lateralized, the more successful it was in capturing prey: the fish can attack very quickly with their preferred side.

This is an advantage because sardines are considerably more agile than their hunters. However, sailfish are only successful predators because they hunt in groups: a single sailfish that always attack from either the left or the right will have difficulty catching its prey, because the prey can then easily predict the side of attack.

The researchers were able to show that the key advantage of hunting in a group is that the prey species is unable to predict whether the sailfish are specialised in attacking from the left or from the right – making the predators more unpredictable to their prey. “The larger the group, the more balanced the left/right relationship is, and the more successful the sailfish will be in hunting sardines,” reported Dr. Kurvers.

In their study, the researchers analysed a total of 365 attacks by 73 sailfish, which occurred in 11 groups with up to 14 individuals per group, in the open ocean off the coast of Mexico. In a morphological analysis, the researchers also examined signs of wear in the microteeth on the long bill used by the predatory fish to attack their prey. This analysis confirmed that most fish prefer to attack from the left or from the right.

The fact that sailfish hunt in groups enables them – in evolutionary terms – to develop a very distinct specialisation. "Our study has enabled us to prove an important advantage that sailfish have when hunting in a group which, until now, was unknown,” explained Dr. Ralf Kurvers.

Incidentally, with around half of the sailfish preferring to attack from the right and the other half specialising in attacks from the left, laterality in sailfish differs from handedness in humans: some 90 per cent of the world’s population are right-handed, with only ten per cent preferring to use the left hand. “Using the same hand is useful when it comes to cooperative activities, which is why a predominant use of one hand has developed in the course of human evolution. The fact that left-handers still exist is explained by the advantages of this alternative laterality which, however, no longer plays an important role in today’s society – namely unpredictability in battle. Around half of top fencers, for example, are still left-handed, and the other half right-handed,” explained Dr. Kurvers.

Link to study: http://www.sciencedirect.com/science/article/pii/S0960982216315251

Kurvers RHJM, Krause S, Viblanc PE, Herbert-Read JE, Zaslansky P, Domenici P, Marras S, Steffensen JF, Wilson ADM, Couillaud P & Krause J (in press). The Evolution of Lateralization in Group Hunting Sailfish. Current Biology.

Contact person:
Dr. Ralf Kurvers
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) and the Max Planck Institute for Human Development
ralf.kurvers@igb-berlin.de
+49 30 82406 472

About IGB:

www.igb-berlin.de

Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V, an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.

Weitere Informationen:

http://www.igb-berlin.de/ IGB-Website
http://www.sciencedirect.com/science/article/pii/S0960982216315251 Paper on sailfish in Current Biology

Johannes Graupner | idw - Informationsdienst Wissenschaft

Further reports about: Freshwater Ecology IGB ecology predatory fish sailfish

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>