Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tobacco plants yield the first vaccine for the dreaded 'cruise ship virus'

20.08.2009
Scientists have used a new vaccine production technology to develop a vaccine for norovirus, a dreaded cause of diarrhea and vomiting that may be the second most common viral infection in the United States after the flu. Sometimes called the "cruise ship virus," this microbe can spread like wildfire through passenger liners, schools, offices and military bases.

The new vaccine is unique in its origin — it was "manufactured" in a tobacco plant using an engineered plant virus. Researchers are enlisting plants in the battle against norovirus, swine flu, bird flu, and other leading infectious diseases.

This plant biotechnology opens the door to more efficient, inexpensive ways to bring vaccines quickly to the public, especially critical in times when viruses mutate into unpredictable new strains, said Charles Arntzen, Ph.D., who reported on the topic today at the 238th National Meeting of the American Chemical Society (ACS).

"The recent outbreak of H1N1 influenza virus has once again reminded us of the ability of disease-causing agents to mutate into new and dangerous forms," Arntzen points out. "It will be at least six months until a vaccine for this new strain will be available, and it will take even longer to create large stock piles of vaccine. For a case like the H1N1 influenza virus, you want to be able to move very rapidly and introduce a commercial vaccine in the shortest possible time. We think we have a major advantage in using engineered plant viruses to scale-up vaccine manufacture within weeks instead of months."

Noroviruses are always mutating, making it a moving target for vaccine developers. Arntzen says this has presented an obstacle for big pharmaceutical companies who might have considered developing a vaccine. Production costs can skyrocket when a single disease may frequently require new vaccines that must be developed and tested for safety and effectiveness. As a result, vaccines do not exist for many diseases that sicken enormous numbers of people each year. Arntzen notes that plant biotechnology could create a cheaper, quicker vaccine manufacturing technique uniquely suited to combat mutating viruses like norovirus and the flu.

Norovirus temporarily disables its victims, giving them severe diarrhea or nausea for up to three days. While not as life-threatening as the flu, Arntzen says it is equally important.

"It essentially closes down wings of hospitals, schools, day care centers and homes for the elderly. In the case of the military, it can shut down an entire ship and delay military operations while there is a cleanup in process. Because the disease spreads so rapidly, the major economic consequences are caused by the disruption of normal daily life and commerce," says Arntzen.

Norovirus will continue to evolve new strains, so Arntzen's team designed a vaccine manufacturing process quick enough to keep up with it and other shape-shifting viruses.

"With plant-based vaccines, we can generate the first gram quantities of the drug and do clinical tests within eight to 10 weeks… We could easily scale that up for commercial use in a two to four month period," explains Arntzen.

Plant-based vaccine production also offers cost advantages. Building greenhouses is more cost effective than the sterilized facilities, expensive manufacturing technology and stainless steel tanks required for the insect or mammalian cell cultures used in most traditional vaccines.

"The other cost advantages relate to vaccine purification and formulation. Purification from plant extracts is simpler because there are no infectious agents to clean up. There are no viruses in plants which can infect humans, so you don't have to worry about viral removal," notes Arntzen.

The team re-engineered plant viruses to produce high levels of specially designed "virus-like" nanoparticles in tobacco plants. At about 25 nanometers in diameter, the particles are about the same size as the norovirus, but they consist only of the outer surface protein — the portion of the virus recognized by the human immune system. The particles contain none of the infectious material of the original virus, but they stimulate a robust immune response to fight off an actual infection.

To battle each new strain of the norovirus and to keep full resistance to older strains, Arntzen says the vaccine could be administered as a booster every 12 to 18 months. After successful experiments in mice, his team is developing a nasal delivery system for the virus-like particles. Arntzen expects to start clinical trials in late 2009 or early 2010.

Several companies, most notably pharmaceutical heavyweight Bayer, are investing in new facilities to create plant-based vaccines for cancer, as well as other pharmaceutical proteins. He suggests the first plant-based vaccines should be publically available within four to five years.

"Mammalian and insect-based vaccines are tried and true — some have barely changed in nearly 60 years," says Arntzen. But that doesn't necessarily mean they are the best in terms of manufacturing costs or flexibility. It simply means that the industry is not accustomed to using plant biotechnology.

"Among other factors, the uncertainty on how such products would be viewed in the FDA approval process has created uncertainty in big pharma companies, and uncertainty is often a 'kiss of death' in product development that can involve hundreds of millions of development cost." But, he adds, "the current pipeline of new products now working their way to FDA approval is sure to change these opinions in coming years."

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>