Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toads Anticipate the Timing and Impact of Their Landings

09.02.2010
Humans may not have a leg up on toads, at least not when it comes to jumping and landing, according to new research by Gary B. Gillis, associate professor of biology at Mount Holyoke College.

In a paper published February 3 in the Royal Society journal Biology Letters, Gillis shows that toads, like humans, are capable of anticipating when and how hard they’re going to land after a jump and activating muscles important in absorbing impact accordingly.

The paper, titled "Do Toads Have a Jump on How Far They Hop...," was co-authored by Gillis and two Mount Holyoke undergraduates, Trupti Akella '09 and Rashmi Gunaratne '10.

Until now, such prescient limb muscle activity has only been demonstrated in mammals, but Gillis and his team showed that hopping toads can alter both the intensity and timing of activity in muscles used to stabilize their forelimbs on impact. In long hops, when impact forces are known to be higher, elbow muscles exhibited more intense activity just prior to landing than during short hops. In addition, one major elbow muscle was always activated at a fixed interval prior to landing in all hops, regardless of distance, suggesting that toads not only gauge how hard they’re going to hit the ground, but also anticipate precisely when that will happen.

“We believe this data represents the first demonstration of tuned pre-landing muscle use in anurans (frogs and toads)," said Gillis. "It raises questions about how widespread this ability is among other species and how important feedback from various sensory systems--e.g., vision--is for mediating this ability."

This coming summer, Gillis and his students will be conducting similar experiments on different species of frogs to determine if their findings are unique to toads or common in anurans. They will also be making a blindfold for toads so they can test Gillis's hypothesis that vision is necessary for these animals to anticipate the timing and magnitude of impact.

Gillis, who has been a member of the College faculty since 2002, specializes in research on the biomechanics and neuromuscular control of animal locomotion.

Related Links:

Faculty profile
http://www.mtholyoke.edu/acad/misc/profile/ggillis.shtml
MHC's Gillis Finds Tailless Lizards Lose Agility
http://home.mtholyoke.edu/news/stories/5681124
The Royal Society
http://royalsociety.org/
Gary B. Gillis
ggillis@mtholyoke.edu
413-538-3319

Gary B. Gillis | Newswise Science News
Further information:
http://www.mtholyoke.edu

Further reports about: anurans elbow muscle limb muscle activity toads

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>