Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Prevent Cancer in Butterfly Disease Patients

11.03.2016

Researchers have revealed how a rare genetic skin condition causes aggressive skin tumours

Fragile skin that blisters easily: 90 percent of the patients that suffer from the skin condition recessive dystrophic epidermolysis bullosa (RDEB) develop rapidly progressing cutaneous squamous cell carcinomas, a type of skin cancer, by the age of 55.


Cells of a cutaneous squamous cell carcinoma (green) that invade the skin. Image by: Dr. Venugopal Rao Mittapalli

80 percent of these patients will die due to metastasis within five years after the cancer has been first detected. Researchers from the University of Freiburg and the University’s Medical Center have discovered how the two diseases are connected and which molecular mechanisms underlie the aggressive behaviour of squamous cell carcinomas in RDEB patients.

Furthermore, the dermatologists and biologists found new potential targets for the development of drugs. Dr. Venugopal Rao Mittapalli, Prof. Dr. Leena Bruckner-Tuderman, Dr. Dimitra Kiritsi and Dr. Alexander Nyström from the Medical Center – University of Freiburg conducted the study in cooperation with Juniorprofessor Dr. Winfried Römer and Dr. Josef Madl from the University of Freiburg and BIOSS Centre for Biological Signalling Studies. The team published the research findings in the journal “Cancer Research”.

Epidermolysis Bullosa, also known as butterfly disease, is a genetic skin condition. The skin of patients with this disease is as fragile as the wings of a butterfly. It blisters easily in response to minor injury or friction such as rubbing or scratching. Furthermore, the patients develop chronic wounds that are not healing and their fingers and toes fuse, for example.

The condition is caused by a mutation of the gene COL7A1, which contains the blueprint for the protein collagen VII. This protein helps to bind the epidermis and the dermis, two layers of the skin, together. In RDEB patient, collagen VII is completely absent and, therefore, the skin becomes fragile.

So far, little was known about the molecular mechanisms connecting squamous cell carcinomas and RDEB. The Freiburg research team discovered that the cancer progresses rapidly in RDEB patients, because the repeated mechanical injury alters the dermis. The amount of proteins called pro-fibrotic growth factors increases, thereby increasing stiffness of the dermis. This environment helps the tumour cells to spread.

The researchers have also identified mechanisms that could be potential drug targets. For example, molecules that inhibit the growth factor TGF reduce the stiffness and the spread of the RDEB cancer cells. “The new knowledge we have gained facilitates the design of prophylactic and therapeutic measures for delaying tumour progression and extending cancer-free periods in RDEB,” says Venugopal Rao Mittapalli, the first author of the study.

Leena Bruckner-Tuderman is Director of the Department of Dermatology of the Medical Center – University of Freiburg. Dimitra Kiritsi, Venugopal Rao Mittapalli und Alexander Nyström are researchers in Bruckner-Tuderman’s group. Winfried Römer is juniorprofessor for Synthetic Biology of Signalling Processes at the Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Institute of Biology II of the University of Freiburg. Josef Madl is postdoctoral scientist in Römer’s research group.

Original publication:
Mittapalli VR, Madl J, Löffek S, Kiritsi D, Kern JS, Römer W, Nyström A, Bruckner-Tuderman L. (2016). Injury-Driven Stiffening of the Dermis Expedites Skin Carcinoma Progression. In: Cancer Res. 76(4):940-51. doi: 10.1158/0008-5472.CAN-15-1348.


Contact:
Prof. Dr. Dr. h.c. Leena Bruckner-Tuderman
Department of Dermatology
Medical Center – University of Freiburg
Phone: +49 (0)761 / 270 - 67010
E-Mail: leena.bruckner-tuderman@uniklinik-freiburg.de

Dr. Venugopal Rao Mittapalli
Department of Dermatology
Medical Center – University of Freiburg
Phone: +49 (0)761 / 270 - 67210
E-Mail: venugopal.rao.mittapalli@uniklinik-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-03-10.36-en?set_language=en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>