Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titanium work surfaces could cut food poisoning cases say scientists

10.09.2008
Food factory work surfaces coated in titanium could cut the number of food poisoning cases every year, scientists heard today (Wednesday 10 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

In the food industry surfaces must be easy to clean. Wear of food contact surfaces through abrasion, cleaning and impact damage increases the surface roughness.

Researchers from Manchester Metropolitan University, UK have looked at the way different work surfaces harbour bacteria that could contaminate food. They discovered that titanium could be a better work surface than stainless steel, as some pathogenic bacteria find it more difficult to attach themselves to the metal.

"It is important that surfaces in a hygienic environment are kept clean," said Adele Packer from Manchester Metropolitan University. "Scratches may entrap micro-organisms such as Escherichia coli and protect them from being removed during cleaning. We measured scratches found on different surfaces and reproduced them in our lab. We coated the surfaces with titanium so that they all had the same chemistry and the only difference was the surface roughness."

The researchers looked at how bacteria are retained after cleaning to surfaces with scratches. They found that the shape of the bacteria affected their retention; rod-shaped Listeria remained in tiny scratches less than 0.5 micrometers across, and round Staphylococcus cells stuck in scratches measuring 1 micrometer across.

"The results show that surface scratches retain bacteria well if they are of comparable size. The more tightly the bacteria fit in the scratches, the more difficult they are to remove during cleaning," said Adele Packer. "Our findings also indicate that titanium coating may have a role in reducing the attachment of E. coli to food contact surfaces; E. coli cells attached to stainless steel much better than titanium."

"These results will help designers make hygienic surfaces that are easy to clean. This should help to reduce the chances of cross-contamination and cross infection," said Adele Packer of Manchester Metropolitan University, UK.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>