Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue loss triggers regeneration in planarian flatworms

03.09.2013
Unlike humans, planarian flatworms have the remarkable ability to regrow any missing body part, making them an ideal model with which to study the molecular basis of regeneration.

Over the years scientists have learned that planarians mount recovery responses that differ depending on the severity of the injury they suffer. For example, a worm with a cut or a puncture wound reacts at the cellular and molecular levels quite differently from one that loses its head or tail. What has remained unclear, however, is just exactly how these responses are triggered.

Whitehead Institute Member Peter Reddien and two of his former graduate students, Michael Gaviño and Danielle Wenemoser, address this longstanding question this week in the journal eLife, revealing a fascinating interplay of signals between two wound-induced genes.

According to the work of Gavino, Wenemoser, and Reddien, regeneration initiation in planarians is regulated by the expression of the genes Smed-follistatin (or fst) and Smed-activin-1 and -2 (or act-1 and act-2), that together act like a switch. After a planarian is wounded, the type of injury determines the level fst expression——the more extreme the loss of tissue, the higher the level of fst expressed. At puncture wounds, fst expression is low, and regeneration is inhibited. However, following amputation, which results in major loss of tissue, fst levels rise and in turn inhibit Activin proteins, allowing regeneration to begin.

To the researchers' surprise, this interaction only affects regeneration and healing related to injury. Normal maintenance and cell turnover throughout the planarian body continue unaffected when fst is inhibited, even though these activities rely on the same neoblast cell population that creates new tissue during regeneration.

"It's a really great phenotype," says Reddien, who is also a Howard Hughes Medical Institute Early Career Scientist and an associate professor of biology at Massachusetts Institute of Technology. "It's one of the dream phenotypes—to have a defect that's regeneration-specific, where the neoblasts are working. It's just regeneration that isn't working."

Such a phenotype could be a powerful tool in the further exploration of mechanisms that control regeneration. And many questions about these mechanisms remain.

"For example, the animals know how far to grow in regeneration, so they don't make tumorous outgrowths," says Wenemoser, who is now a postdoctoral researcher at Stanford University. "There's some kind of regulation on homeostatic size, so they're not growing out all wild and crazy. There's definitely more to investigate there."

Gaviño agrees, and points out that the fst/act-1/2 switch may ultimately help scientists tease apart regeneration in other organisms, including humans.

"This regulation by activin and follistatin may be conserved in other systems," says Gaviño, who is currently a postdoctoral researcher at Univeristy of California, San Francisco. "There are a lot of hints in the scientific literature that versions of activin or follistatin or both are activated by injury and may play a role in regeneration in other animals, but pinning the role of initiating regeneration to them hasn't happened yet."

This work was supported by the National Institutes of Health grant R01GM080639 and the Keck Foundation.

Written by Nicole Giese Rura

Peter Reddien's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Early Career Scientist and an associate professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Tissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling"

eLife, online on September 10, 2013.

Michael A. Gaviño (1), Danielle Wenemoser (1), Irving E. Wang (1), and Peter Reddien (1).

1. Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.

Nicole Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>