Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue loss triggers regeneration in planarian flatworms

03.09.2013
Unlike humans, planarian flatworms have the remarkable ability to regrow any missing body part, making them an ideal model with which to study the molecular basis of regeneration.

Over the years scientists have learned that planarians mount recovery responses that differ depending on the severity of the injury they suffer. For example, a worm with a cut or a puncture wound reacts at the cellular and molecular levels quite differently from one that loses its head or tail. What has remained unclear, however, is just exactly how these responses are triggered.

Whitehead Institute Member Peter Reddien and two of his former graduate students, Michael Gaviño and Danielle Wenemoser, address this longstanding question this week in the journal eLife, revealing a fascinating interplay of signals between two wound-induced genes.

According to the work of Gavino, Wenemoser, and Reddien, regeneration initiation in planarians is regulated by the expression of the genes Smed-follistatin (or fst) and Smed-activin-1 and -2 (or act-1 and act-2), that together act like a switch. After a planarian is wounded, the type of injury determines the level fst expression——the more extreme the loss of tissue, the higher the level of fst expressed. At puncture wounds, fst expression is low, and regeneration is inhibited. However, following amputation, which results in major loss of tissue, fst levels rise and in turn inhibit Activin proteins, allowing regeneration to begin.

To the researchers' surprise, this interaction only affects regeneration and healing related to injury. Normal maintenance and cell turnover throughout the planarian body continue unaffected when fst is inhibited, even though these activities rely on the same neoblast cell population that creates new tissue during regeneration.

"It's a really great phenotype," says Reddien, who is also a Howard Hughes Medical Institute Early Career Scientist and an associate professor of biology at Massachusetts Institute of Technology. "It's one of the dream phenotypes—to have a defect that's regeneration-specific, where the neoblasts are working. It's just regeneration that isn't working."

Such a phenotype could be a powerful tool in the further exploration of mechanisms that control regeneration. And many questions about these mechanisms remain.

"For example, the animals know how far to grow in regeneration, so they don't make tumorous outgrowths," says Wenemoser, who is now a postdoctoral researcher at Stanford University. "There's some kind of regulation on homeostatic size, so they're not growing out all wild and crazy. There's definitely more to investigate there."

Gaviño agrees, and points out that the fst/act-1/2 switch may ultimately help scientists tease apart regeneration in other organisms, including humans.

"This regulation by activin and follistatin may be conserved in other systems," says Gaviño, who is currently a postdoctoral researcher at Univeristy of California, San Francisco. "There are a lot of hints in the scientific literature that versions of activin or follistatin or both are activated by injury and may play a role in regeneration in other animals, but pinning the role of initiating regeneration to them hasn't happened yet."

This work was supported by the National Institutes of Health grant R01GM080639 and the Keck Foundation.

Written by Nicole Giese Rura

Peter Reddien's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Early Career Scientist and an associate professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Tissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling"

eLife, online on September 10, 2013.

Michael A. Gaviño (1), Danielle Wenemoser (1), Irving E. Wang (1), and Peter Reddien (1).

1. Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.

Nicole Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>