Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tired neurons caught nodding off in sleep-deprived rats

28.04.2011
Performance decline belies seeming wakefulness, NIH-funded study

A new study in rats is shedding light on how sleep-deprived lifestyles might impair functioning without people realizing it. The more rats are sleep-deprived, the more some of their neurons take catnaps – with consequent declines in task performance.

Even though the animals are awake and active, brainwave measures reveal that scattered groups of neurons in the thinking part of their brain, or cortex, are briefly falling asleep, scientists funded by the National Institutes of Health have discovered.

"Such tired neurons in an awake brain may be responsible for the attention lapses, poor judgment, mistake-proneness and irritability that we experience when we haven't had enough sleep, yet don't feel particularly sleepy," explained Giulio Tononi, M.D., Ph.D., of the University of Wisconsin-Madison. "Strikingly, in the sleep-deprived brain, subsets of neurons go offline in one cortex area but not in another – or even in one part of an area and not in another."

Tononi and colleagues report their findings online in the April 28, 2011 issue of the journal Nature. Their study was funded in part by the NIH's National Institute of Mental health and a NIH Director's Pioneer Award, supported through the Common Fund, and administered by NIMH and the National Institute on Neurological Disorders and Stroke.

Previous studies had hinted at such local snoozing with prolonged wakefulness. Yet little was known about how underlying neuronal activity might be changing.

To learn more, the researchers tracked electrical activity at multiple sites in the cortex as they kept rats awake for several hours. They put novel objects into their cages – colorful balls, boxes, tubes and odorous nesting material from other rats. The sleepier the rats got, more subsets of cortex neurons switched off, seemingly randomly, in various localities. These tired neurons' electrical profiles resembled those of neurons throughout the cortex during NREM or slow wave sleep. Yet, the rats' overall EEG, a measure of brain electrical activity at the scalp, confirmed that they were awake, as did their behavior. So neuronal tiredness differs from more overt microsleep – 3-15-second lapses with eyes closing and sleep-like EEG – that is sometimes experienced with prolonged wakefulness. It is more analogous to local lapses seen in some forms of epilepsy, suggest the researchers.

However subtle, having tired neurons did interfere with task performance. If neurons switched off in the motor cortex within a split second before a rat tried to reach for a sugar pellet, it decreased its likelihood of success by 37.5 percent. And the overall number of such misses increased significantly with prolonged wakefulness. This suggests that tired neurons, and accompanying increases in slow wave activity, might help to account for the impaired performance of sleep-deprived people who may seem behaviorally and subjectively awake.

Subsets of neurons going offline with longer wakefulness is, in many ways, the mirror image of progressive changes that occur during recovery sleep following a period of sleep deprivation. Tononi suggests that both serve to maintain equilibrium – part of the compensatory mechanisms that regulate sleep need. Just as sleep deprivation produces a brain-wide state of instability, it may also trigger local instability in the cortex, possibly by depleting levels of brain chemical messengers. So, tired neurons might nod off as part of an energy-saving or restorative process for overloaded neuronal connections.

"Research suggests that sleep deprivation during adolescence may have adverse emotional and cognitive consequences that could affect brain development," noted NIMH Director Thomas R. Insel, M.D. "The broader line of studies to which this belongs, are, in part, considering changes in sleep patterns of the developing brain as a potential index to the health of neural connections that can begin to go awry during the critical transition from childhood to the teen years."

Reference:

Local sleep in awake rats. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G. Nature. 2011 April 28.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: EEG NIMH Nature Immunology electrical activity sleep deprivation

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>