Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tired neurons caught nodding off in sleep-deprived rats

28.04.2011
Performance decline belies seeming wakefulness, NIH-funded study

A new study in rats is shedding light on how sleep-deprived lifestyles might impair functioning without people realizing it. The more rats are sleep-deprived, the more some of their neurons take catnaps – with consequent declines in task performance.

Even though the animals are awake and active, brainwave measures reveal that scattered groups of neurons in the thinking part of their brain, or cortex, are briefly falling asleep, scientists funded by the National Institutes of Health have discovered.

"Such tired neurons in an awake brain may be responsible for the attention lapses, poor judgment, mistake-proneness and irritability that we experience when we haven't had enough sleep, yet don't feel particularly sleepy," explained Giulio Tononi, M.D., Ph.D., of the University of Wisconsin-Madison. "Strikingly, in the sleep-deprived brain, subsets of neurons go offline in one cortex area but not in another – or even in one part of an area and not in another."

Tononi and colleagues report their findings online in the April 28, 2011 issue of the journal Nature. Their study was funded in part by the NIH's National Institute of Mental health and a NIH Director's Pioneer Award, supported through the Common Fund, and administered by NIMH and the National Institute on Neurological Disorders and Stroke.

Previous studies had hinted at such local snoozing with prolonged wakefulness. Yet little was known about how underlying neuronal activity might be changing.

To learn more, the researchers tracked electrical activity at multiple sites in the cortex as they kept rats awake for several hours. They put novel objects into their cages – colorful balls, boxes, tubes and odorous nesting material from other rats. The sleepier the rats got, more subsets of cortex neurons switched off, seemingly randomly, in various localities. These tired neurons' electrical profiles resembled those of neurons throughout the cortex during NREM or slow wave sleep. Yet, the rats' overall EEG, a measure of brain electrical activity at the scalp, confirmed that they were awake, as did their behavior. So neuronal tiredness differs from more overt microsleep – 3-15-second lapses with eyes closing and sleep-like EEG – that is sometimes experienced with prolonged wakefulness. It is more analogous to local lapses seen in some forms of epilepsy, suggest the researchers.

However subtle, having tired neurons did interfere with task performance. If neurons switched off in the motor cortex within a split second before a rat tried to reach for a sugar pellet, it decreased its likelihood of success by 37.5 percent. And the overall number of such misses increased significantly with prolonged wakefulness. This suggests that tired neurons, and accompanying increases in slow wave activity, might help to account for the impaired performance of sleep-deprived people who may seem behaviorally and subjectively awake.

Subsets of neurons going offline with longer wakefulness is, in many ways, the mirror image of progressive changes that occur during recovery sleep following a period of sleep deprivation. Tononi suggests that both serve to maintain equilibrium – part of the compensatory mechanisms that regulate sleep need. Just as sleep deprivation produces a brain-wide state of instability, it may also trigger local instability in the cortex, possibly by depleting levels of brain chemical messengers. So, tired neurons might nod off as part of an energy-saving or restorative process for overloaded neuronal connections.

"Research suggests that sleep deprivation during adolescence may have adverse emotional and cognitive consequences that could affect brain development," noted NIMH Director Thomas R. Insel, M.D. "The broader line of studies to which this belongs, are, in part, considering changes in sleep patterns of the developing brain as a potential index to the health of neural connections that can begin to go awry during the critical transition from childhood to the teen years."

Reference:

Local sleep in awake rats. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G. Nature. 2011 April 28.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: EEG NIMH Nature Immunology electrical activity sleep deprivation

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>