Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny songbird discovered to migrate non-stop, 1,500 miles over the Atlantic


For the first time biologists report 'irrefutable evidence' that tiny blackpoll warblers complete a nonstop flight from about 1,410 to 1,721 miles (2,270 to 2,770 km) in just two to three days

For more than 50 years, scientists had tantalizing clues suggesting that a tiny, boreal forest songbird known as the blackpoll warbler departs each fall from New England and eastern Canada to migrate nonstop in a direct line over the Atlantic Ocean toward South America, but proof was hard to come by.

Blackpoll warbler fitted with a miniaturized light-sensing geolocator on its back that enabled researchers to track their exact migration routes from eastern Canada and New England south toward wintering grounds.

Credit: Vermont Center for Ecostudies

Now, for the first time an international team of biologists report "irrefutable evidence" that the birds complete a nonstop flight ranging from about 1,410 to 1,721 miles (2,270 to 2,770 km) in just two to three days, making landfall somewhere in Puerto Rico, Cuba and the islands known as the Greater Antilles, from there going on to northern Venezuela and Columbia. Details of their study, which used light-level, or solar, geolocators, appear in the current issue of Biology Letters.

First author Bill DeLuca, an environmental conservation research fellow at the University of Massachusetts Amherst, with colleagues at the University of Guelph, Ontario, the Vermont Center for Ecostudies and other institutions, says, "For small songbirds, we are only just now beginning to understand the migratory routes that connect temperate breeding grounds to tropical wintering areas.

We're really excited to report that this is one of the longest nonstop overwater flights ever recorded for a songbird, and finally confirms what has long been believed to be one of the most extraordinary migratory feats on the planet."

While other birds, such as albatrosses, sandpipers and gulls are known for trans-oceanic flights, the blackpoll warbler is a forest dweller that migrates boldly where few of its relatives dare to travel. Most migratory songbirds that winter in South America take a less risky, continental route south through Mexico and Central America, the authors note. A water landing would be fatal to a warbler.

In the recent past, DeLuca explains, geolocators have been too large and heavy for use in studying songbird migration and the tiny blackpoll warbler, at around half an ounce (12 grams) or about as much as 12 business cards, was too small to carry even the smallest of traditional tracking instruments. Scientists had only ground observations and radar as tools.

But with recent advances in geolocator technology, they have become lighter and smaller. For this work, the researchers harnessed miniaturized geolocators about the size of a dime and weighing only 0.5g to the birds' lower backs like a tiny backpack. By retrieving these when the warblers returned to Canada and Vermont the following spring, then analyzing the data, DeLuca and colleagues could trace their migration routes.

For this work the scientists fitted geolocator packs on 20 birds in Vermont and 20 more in Nova Scotia. They were able to recapture three birds from the Vermont group and two from the Nova Scotia group for analyses.

So-called light-level geolocators use solar geolocation, a method used for centuries by mariners and explorers. It is based on the fact that day length varies with latitude while time of solar noon varies with longitude. So all the instrument needs to do is record the date and length of daylight, from which daily locations can then be inferred once the geolocator is recaptured. "When we accessed the locators, we saw the blackpolls' journey was indeed directly over the Atlantic. The distances travelled ranged from 2,270 to 2,770 kilometers," DeLuca says.

To prepare for the flight, the birds build up their fat stores, explains Canadian team leader Ryan Norris of the University of Guelph. "They eat as much as possible, in some cases doubling their body mass in fat so they can fly without needing food or water. For blackpolls, they don't have the option of failing or coming up a bit short. It's a fly-or-die journey that requires so much energy."

He adds, "These birds come back every spring very close to the same place they used in the previous breeding season, so with any luck you can catch them again. Of course there is high mortality among migrating songbirds on such a long journey, we believe only about half return."

Chris Rimmer, an ornithologist at the Vermont Center for Ecostudies notes, "We've only sampled this tiny part of their breeding range. We don't know what birds from Alaska do, for example. This may be one of the most abundant warblers in North America, but little is known about its distribution or ecology on the wintering grounds in Venezuela and the Amazon. However, there is no longer any doubt that the blackpoll undertakes one of the most audacious migrations of any bird on earth."

DeLuca says, "It was pretty thrilling to get the return birds back, because their migratory feat in itself is on the brink of impossibility. We worried that stacking one more tiny card against their success might result in them being unable to complete the migration. Many migratory songbirds, blackpolls included, are experiencing alarming population declines for a variety of reasons, if we can learn more about where these birds spend their time, particularly during the nonbreeding season, we can begin to examine and address what might be causing the declines."

As for why the blackpoll undertakes such a perilous journey while other species follow a longer but safer coastal route, the authors say that because migration is the most perilous part of a songbird's year, it may make sense to get it over with as quickly as possible. However, this and other questions remain to be studied.

Other researchers on the team besides those from UMass Amherst, the University of Guelph and the Vermont Center for Ecostudies, were from the Smithsonian Conservation Biology Institute, Acadia University, Bird Studies Canada and the University of Exeter, U.K. Each contributed to funding the study.

Media Contact

Janet Lathrop


Janet Lathrop | EurekAlert!

Further reports about: Biology Blackpoll warbler body mass migratory songbirds songbirg

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>