Tiny Silver Particles Trap Mercury

Anyone who thinks amalgams are limited to tooth fillings is missing something: Amalgams, which are alloys of mercury and other metals, have been used for over 2500 years in the production of jewelry and for the extraction of metals like silver and gold in mining operations.

These days, the inverse process is of greater interest: the removal of mercury from wastewater by amalgamation with precious metals in the form of nanoparticles. Kseniia Katok and colleagues have now reported new insights in the journal Angewandte Chemie: if the diameter of silver nanoparticles is made even smaller, significantly more mercury can be extracted relative to the amount of silver used.

In the conventional process, two silver atoms react with one mercury ion, which carries a twofold positive charge, to produce two silver ions, which go into solution, and a neutral mercury atom, which is taken up by the metallic silver particles. The stoichiometric ratio of mercury to silver is thus 1:2.

The researchers at the University of Brighton (UK) and colleagues in Kazakhstan, France and Japan have now determined that the stoichiometry of the reaction changes if the diameter of the silver nanoparticles drops below a critical 32 nm.

This effect, known as “hyperstoichiometry” depends on the size of the nanoparticles. With particles that have a diameter around 10 nm, the ratio can reach between 1.1:1 and 1.7:1, depending on the mercury counterion. In these cases, the reaction is clearly occurring differently than it does with silver particles of “normal” size. The researchers postulate that the initially produced silver ions are absorbed into the silver nanoparticles and, under the catalytic influence of the tiny silver nanoparticles, are “recycled” back to elemental silver by the negatively charged counterions of the mercury salts, which in these experiments were nitrate or acetate.

It has often been observed that very small nanoparticles have a higher catalytic activity than larger ones because their surface properties dominate over their bulk properties. The hyperstoichiometric effect suggests new approaches for the purification of runoff as well as catalysis.

To produce the necessary extremely small silver nanoparticles, the scientists equipped a silicon dioxide surface with individual silicon hydride (-SiH) groups. These are able to reduce silver ions to neutral silver atoms, which are bound to the surface and probably act as nucleation sites for the further aggregation of silver. The density of SiH groups and reaction time can be used to control the size of the particles. In contrast to conventional processes, this requires no stabilizers, which stick to the silver nanoparticles and alter their physical and chemical properties.

About the Author
Dr Kseniia Katok is a Marie Curie International Incoming Fellow at the University of Brighton (UK) hosted with the Nanoscience & Nanotechnology Group. She is particularly interested in the chemistry of silica and carbon and the development of innovative materials for applications in the environmental and biomedical sectors.
Author: Kseniia Katok, University of Brighton (UK), http://www.brighton.ac.uk/set/contact/details.php?uid=kk95

Title: Hyperstoichiometric Interaction Between Silver and Mercury at the Nanoscale

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201106776

Media Contact

Dr Kseniia Katok Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors