Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny RNA molecules control labor, may be key to blocking premature birth

16.11.2010
Tiny molecules called microRNAs act together with hormones to control the onset of labor, raising the prospect that RNA-based drugs might be able to prevent premature labor, researchers at UT Southwestern Medical Center have discovered in a preclinical study.

"With these findings, we understand better the system that controls labor, so with future research we might have the potential to manipulate it and prevent preterm birth," said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology at UT Southwestern and senior author of the study, which appears in an online issue of the Proceedings of the National Academy of Sciences.

Using pregnant mice as well as human uterine tissue, the researchers uncovered a feedback cycle involving microRNAs, proteins called ZEB1 and ZEB2, and the pregnancy-maintaining hormone progesterone, as well as genes and other factors that control contraction of the uterus.

"We've been struggling for a long time to understand how progesterone keeps the uterus from contracting during most of pregnancy," Dr. Mendelson said. "Our findings indicate that progesterone controls a family of microRNAs whose levels dramatically increase right before labor. At the same time, levels of the microRNAs' targets, the ZEB proteins, decrease. This enables uterine contractions."

... more about:
»B protein »Medical Wellness »RNA »Tiny plants »ZEB1 »ZEB2

MicroRNA is one form of RNA, a chemical cousin of DNA. MicroRNAs interact with other protein-making molecules in cells, helping to fine-tune the expression of networks of genes and control cell function, Dr. Mendelson said.

In the new study, the researchers measured microRNA levels in the uteri of mice in mid-pregnancy and near labor. As labor approached, the level of a group of microRNAs called the miR-200 family greatly increased. When the researchers artificially stimulated premature labor, the miR-200 levels also increased.

The miR-200s block the production of two proteins called ZEB1 and ZEB2. In contrast, progesterone directly increases ZEB1 levels. The researchers uncovered a feedback cycle involving all these factors that prevents uterine contraction as long as progesterone is present.

"We found that during pregnancy, progesterone acts on the feedback loop to keep the microRNA levels down and the ZEBs up," said Nora Renthal, Medical Scientist Training Program student and lead author of the study. "The ZEBs, in turn, inhibit contraction-associate genes. But then, just prior to labor, there's a switch. Progesterone action decreases; the ZEBs are suppressed; the miR-200s increase; and the contraction-associated genes are turned on."

The researchers directly tested the contractility of cultured human uterine cells containing low or high levels of ZEB1 or ZEB2. In the presence of oxytocin, uterine cells with low levels of ZEBs contracted, while those with high levels did not, mirroring what happened in the pregnant mice.

While the study shows that the miR-200 family might be a likely therapeutic target to fight premature labor, the microRNAs and their interaction with the ZEB proteins also are known to play a role in cancer, so drug development would have to be approached very carefully, Dr. Mendelson said.

Other UT Southwestern researchers involved in the study were Dr. Chien-Cheng Chen, postdoctoral researcher in biochemistry; Koriand'r Williams, MSTP student; Dr. Robert Gerard, associate professor of internal medicine; and Dr. Janine Prange-Kiel, assistant professor of cell biology.

The study was funded by the National Institutes of Health and the March of Dimes Birth Defects Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: B protein Medical Wellness RNA Tiny plants ZEB1 ZEB2

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>