Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny RNA molecules control labor, may be key to blocking premature birth

16.11.2010
Tiny molecules called microRNAs act together with hormones to control the onset of labor, raising the prospect that RNA-based drugs might be able to prevent premature labor, researchers at UT Southwestern Medical Center have discovered in a preclinical study.

"With these findings, we understand better the system that controls labor, so with future research we might have the potential to manipulate it and prevent preterm birth," said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology at UT Southwestern and senior author of the study, which appears in an online issue of the Proceedings of the National Academy of Sciences.

Using pregnant mice as well as human uterine tissue, the researchers uncovered a feedback cycle involving microRNAs, proteins called ZEB1 and ZEB2, and the pregnancy-maintaining hormone progesterone, as well as genes and other factors that control contraction of the uterus.

"We've been struggling for a long time to understand how progesterone keeps the uterus from contracting during most of pregnancy," Dr. Mendelson said. "Our findings indicate that progesterone controls a family of microRNAs whose levels dramatically increase right before labor. At the same time, levels of the microRNAs' targets, the ZEB proteins, decrease. This enables uterine contractions."

... more about:
»B protein »Medical Wellness »RNA »Tiny plants »ZEB1 »ZEB2

MicroRNA is one form of RNA, a chemical cousin of DNA. MicroRNAs interact with other protein-making molecules in cells, helping to fine-tune the expression of networks of genes and control cell function, Dr. Mendelson said.

In the new study, the researchers measured microRNA levels in the uteri of mice in mid-pregnancy and near labor. As labor approached, the level of a group of microRNAs called the miR-200 family greatly increased. When the researchers artificially stimulated premature labor, the miR-200 levels also increased.

The miR-200s block the production of two proteins called ZEB1 and ZEB2. In contrast, progesterone directly increases ZEB1 levels. The researchers uncovered a feedback cycle involving all these factors that prevents uterine contraction as long as progesterone is present.

"We found that during pregnancy, progesterone acts on the feedback loop to keep the microRNA levels down and the ZEBs up," said Nora Renthal, Medical Scientist Training Program student and lead author of the study. "The ZEBs, in turn, inhibit contraction-associate genes. But then, just prior to labor, there's a switch. Progesterone action decreases; the ZEBs are suppressed; the miR-200s increase; and the contraction-associated genes are turned on."

The researchers directly tested the contractility of cultured human uterine cells containing low or high levels of ZEB1 or ZEB2. In the presence of oxytocin, uterine cells with low levels of ZEBs contracted, while those with high levels did not, mirroring what happened in the pregnant mice.

While the study shows that the miR-200 family might be a likely therapeutic target to fight premature labor, the microRNAs and their interaction with the ZEB proteins also are known to play a role in cancer, so drug development would have to be approached very carefully, Dr. Mendelson said.

Other UT Southwestern researchers involved in the study were Dr. Chien-Cheng Chen, postdoctoral researcher in biochemistry; Koriand'r Williams, MSTP student; Dr. Robert Gerard, associate professor of internal medicine; and Dr. Janine Prange-Kiel, assistant professor of cell biology.

The study was funded by the National Institutes of Health and the March of Dimes Birth Defects Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: B protein Medical Wellness RNA Tiny plants ZEB1 ZEB2

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>