Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny RNA molecules control labor, may be key to blocking premature birth

16.11.2010
Tiny molecules called microRNAs act together with hormones to control the onset of labor, raising the prospect that RNA-based drugs might be able to prevent premature labor, researchers at UT Southwestern Medical Center have discovered in a preclinical study.

"With these findings, we understand better the system that controls labor, so with future research we might have the potential to manipulate it and prevent preterm birth," said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology at UT Southwestern and senior author of the study, which appears in an online issue of the Proceedings of the National Academy of Sciences.

Using pregnant mice as well as human uterine tissue, the researchers uncovered a feedback cycle involving microRNAs, proteins called ZEB1 and ZEB2, and the pregnancy-maintaining hormone progesterone, as well as genes and other factors that control contraction of the uterus.

"We've been struggling for a long time to understand how progesterone keeps the uterus from contracting during most of pregnancy," Dr. Mendelson said. "Our findings indicate that progesterone controls a family of microRNAs whose levels dramatically increase right before labor. At the same time, levels of the microRNAs' targets, the ZEB proteins, decrease. This enables uterine contractions."

... more about:
»B protein »Medical Wellness »RNA »Tiny plants »ZEB1 »ZEB2

MicroRNA is one form of RNA, a chemical cousin of DNA. MicroRNAs interact with other protein-making molecules in cells, helping to fine-tune the expression of networks of genes and control cell function, Dr. Mendelson said.

In the new study, the researchers measured microRNA levels in the uteri of mice in mid-pregnancy and near labor. As labor approached, the level of a group of microRNAs called the miR-200 family greatly increased. When the researchers artificially stimulated premature labor, the miR-200 levels also increased.

The miR-200s block the production of two proteins called ZEB1 and ZEB2. In contrast, progesterone directly increases ZEB1 levels. The researchers uncovered a feedback cycle involving all these factors that prevents uterine contraction as long as progesterone is present.

"We found that during pregnancy, progesterone acts on the feedback loop to keep the microRNA levels down and the ZEBs up," said Nora Renthal, Medical Scientist Training Program student and lead author of the study. "The ZEBs, in turn, inhibit contraction-associate genes. But then, just prior to labor, there's a switch. Progesterone action decreases; the ZEBs are suppressed; the miR-200s increase; and the contraction-associated genes are turned on."

The researchers directly tested the contractility of cultured human uterine cells containing low or high levels of ZEB1 or ZEB2. In the presence of oxytocin, uterine cells with low levels of ZEBs contracted, while those with high levels did not, mirroring what happened in the pregnant mice.

While the study shows that the miR-200 family might be a likely therapeutic target to fight premature labor, the microRNAs and their interaction with the ZEB proteins also are known to play a role in cancer, so drug development would have to be approached very carefully, Dr. Mendelson said.

Other UT Southwestern researchers involved in the study were Dr. Chien-Cheng Chen, postdoctoral researcher in biochemistry; Koriand'r Williams, MSTP student; Dr. Robert Gerard, associate professor of internal medicine; and Dr. Janine Prange-Kiel, assistant professor of cell biology.

The study was funded by the National Institutes of Health and the March of Dimes Birth Defects Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: B protein Medical Wellness RNA Tiny plants ZEB1 ZEB2

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>