Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny probes for living cells

30.05.2011
Revealing the inner workings of cells takes a step forward using a newly developed Raman microscopy technique

Living cells are virtuosos of chemistry. At any one time, countless chemical reactions are taking place within each cell. For researchers trying to understand how cells function, unraveling this complex chemistry is an ongoing challenge. The process, however, could soon become a little more straightforward.

Mikiko Sodeoka and colleagues at the RIKEN Advanced Science Institute at Wako, in collaboration with a team led by Katsumasa Fujita and Satoshi Kawata at Osaka University, have demonstrated how to tag molecules in a way that promises to be much more versatile than current methods[1].

Traditionally, researchers looking to study the role of a particular small molecule within a cell have tagged it with a fluorescent marker. Using a fluorescence microscope, the tagged substance can be followed as it moves around the cell. However, fluorescent tags are bulky, and so can disrupt the molecule’s normal cellular interactions. To get around this problem, molecules can sometimes be tagged after reaching their destination within the cell, but this technique only works in a limited number of cases.

Sodeoka and her team have now shown that a simple chemical substituent called an alkyne, which consists of just two carbon atoms joined together by a triple bond, can replace the bulky fluorescent tag. Their imaging technique relies on the fact that alkynes scatter a particular wavelength of light when irradiated with a laser—a process known as Raman scattering—which can be detected using a Raman microscope. No other cellular components scatter light at this wavelength, giving a clear picture of the molecule within the cell.

To demonstrate the potential of their technique, the researchers used an alkyne-tagged component of DNA known as EdU. They then used a Raman microscope developed by Fujita and his team to follow a group of replicating cells as they incorporated EdU into their DNA (Fig. 1). The technique took some work to optimize, says Sodeoka. “We were very happy when we could finally see the time-series pictures of the incorporation of EdU into DNA.”

The EdU experiment is just a proof of principle, Sodeoka adds. “At this point, the sensitivity of the alkyne tag using Raman microscopy is lower than fluorescent imaging,” she says. To improve the sensitivity, the team is working to optimize the attachment of the alkyne tag, and also to improve the Raman microscope itself. “If the sensitivity problem is solved, Raman imaging using alkynes as a small tag could become a powerful tool,” she concludes.

The corresponding author for this highlight is based at the Synthetic Organic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Yamakoshi, H., Dodo, K., Okada, M., Ando, J., Palonpon, A., Fujita, K., Kawata, S. & Sodeoka, M. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. Journal of the American Chemical Society 133, 6102–6105 (2011)

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>