Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny particles can deliver antioxidant enzyme to injured heart cells

17.11.2009
Researchers at Emory University and the Georgia Institute of Technology have developed microscopic polymer beads that can deliver an antioxidant enzyme made naturally by the body into the heart.

Injecting the enzyme-containing particles into rats' hearts after a simulated heart attack reduced the number of dying cells and resulted in improved heart function days later.

Michael Davis, PhD, is presenting the results Sunday evening at the American Heart Association Scientific Sessions in Orlando. Davis is assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

The enzyme in the particles, called superoxide dismutase (SOD), soaks up toxic free radicals produced when cells are deprived of blood during a heart attack. Previously scientists have tried injecting SOD by itself into injured animals, but it doesn't seem to last long enough in the body to have any beneficial effects.

"Our goal is to have a therapy to blunt the permanent damage of a heart attack and reduce the probability of heart failure later in life," Davis says. "This is a way to get extra amounts of a beneficial antioxidant protein to the cells that need it."

The simulated heart attacks caused a 20 percent decrease in the ability of the rats' hearts to pump blood that was completely prevented by the particles, he says.

The particles are made of a material called polyketals, developed by Niren Murthy, PhD, assistant professor of biomedical engineering at Georgia Tech and Emory. The polyketals encase the enzyme and are taken up by cells within the heart. There the particles slowly release the enzyme.

The microparticles break down into nontoxic components in the body -- an advantage over other biodegradable polymers like PLGA (polylactic-co-glycolic acid), already approved for use in sutures and grafts. When polymers such as PLGA are made into particles for drug delivery, they can induce inflammation.

Davis and his colleagues have also used the polyketal microparticles to encase anti-inflammatory drugs. This is the first report on the antioxidant enzyme-containing particles' use in a model of heart attack.

Emory and Georgia Tech scientists have also used SOD-containing particles to treat mice engineered to have a deficiency in SOD in the lung: http://www.ncbi.nlm.nih.gov/pubmed/18787098

Although the SOD particles had a protective effect when the heart was examined three days after the simulated heart attack, the beneficial effects weren't as strong three weeks later. The rats' hearts still had a 35 percent improvement compared to untreated animals, Davis says. Combining them with microparticles containing the anti-inflammatory drugs proved to provide an additional boost.

"This is likely because it is important to scavenge free radicals at early time points, but inflammation becomes more important later on," he says.

More on polyketals from Davis' lab:
http://www.nature.com/nmat/journal/v7/n11/abs/nmat2299.html
http://whsc.emory.edu/press_releases2.cfm?announcement_id_seq=16184
The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Emory Winship Cancer Institute; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has $2.3 billion in operating expenses, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,500 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Jennifer Johnson | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>