Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny oxygen generators boost effectiveness of anticancer treatment

01.09.2011
Researchers have created and tested miniature devices that are implanted in tumors to generate oxygen, boosting the killing power of radiation and chemotherapy.

The technology is designed to treat solid tumors that are hypoxic at the center, meaning the core contains low oxygen levels.

"This is not good because radiation therapy needs oxygen to be effective," said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering. "So the hypoxic areas are hard to kill. Pancreatic and cervical cancers are notoriously hypoxic. If you generate oxygen you can increase the effectiveness of radiation therapy and also chemotherapy."

The new "implantable micro oxygen generator" is an electronic device that receives ultrasound signals and uses the energy to generate a small voltage to separate oxygen and hydrogen from water ¨l a chemical operation called water electrolysis.

"We are putting these devices inside tumors and then exposing the tumors to ultrasound," Ziaie said. "The ultrasound energy powers the device, generating oxygen.

The devices were created at the Birck Nanotechnology Center in the university's Discovery Park. Purdue researchers are working with Song-Chu (Arthur) Ko, an assistant professor of clinical radiation oncology at the Indiana University School of Medicine.

Researchers have tested the devices in pancreatic tumors implanted in mice, showing they generated oxygen and shrunk tumors faster than tumors without the devices. The devices are slightly less than one centimeter long and are inserted into tumors with a hypodermic biopsy needle.

"Most of us have been touched by cancer in one way or another," Ziaie said. "My father is a cancer survivor, and he went through many rounds of very painful chemotherapy. This is a new technology that has the potential to improve the effectiveness of such therapy."

Findings are detailed in a research paper appearing online this month in Transactions on Biomedical Engineering. The paper was written by research assistant professor Teimour Maleki, doctoral students Ning Cao and Seung Hyun Song, Ko and Ziaie.

"The implantable mini oxygen generator project is one of 11 projects the Alfred Mann Institute for Biomedical Development at Purdue University (AMIPurdue) has sponsored," Ziaie said. "AMIPurdue has been instrumental in providing the development funding of roughly $500,000 on this project. And beyond funding, the AMIPurdue team has also helped us with market research, physician feedback, industry input, as well as intellectual property and regulatory strategy. We have been able to accomplish a great deal in a short time due to the collaborative effort with AMIPurdue."

A patent application has been filed for the design.

Future work may focus on redesigning the device to make it more practical for manufacturing and clinical trials.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: AMIPurdue Biomedical Tiny plants pancreatic tumor radiation therapy

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>