Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Natural Pirates Fight Multi-Resistant Pathogens

13.03.2014

Bacteriophages Offer New Strategic Options in Battling Multi-Resistant Achromobacter xylosoxidans

Infections with the often multi-resistant pathogen Achromobacter xylosoxidans are reported more and more frequently.


Adsorption of phage JWAlpha to Achromobacter DSM 11852 cells (Scanning electron micrograph) Sample was taken 5 min after pahge application. Adsorbed Phages are coloured in red.

@HZI (M.Rohde), DSMZ (J.Wittmann)


Bacteriophages are viruses that infect and replicates within bacteria (Achromobacter 90 min after infection with alpha phages)

@HZI (M.Rhode), DSMZ (J.Wittmann)

This opportunistic pathogen is for example involved in cystic fibrosis, a metabolic disorder for which no cure exists. Bacteriophages (phages for short) are natural enemies of bacteria and might provide an alternative way of effectively fighting infections, in particular hospital-acquired infections.

Johannes Wittmann, a researcher at Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig (Brunswick), Germany, has isolated and thoroughly studied various phages targeting Achromobacter xylosoxidans. His is the first study presenting a large number of diverse phages that might be used to fight this pathogen.

Further studies investigating their therapeutic potential are under way. Initial results have just been published in the scientific journals PLOS One and Virology Journal.

iruses targeting bacteria are referred to as bacteriophages, or phages for short. They have become a focus of scientific interest for rather practical reasons: As antibiotics are losing, at an alarming rate, their effectiveness in fighting multi-resistant bacterial pathogens, these natural enemies of bacteria are becoming more and more important. This is where current basic research at DSMZ, conducted by a team led by scientists Johannes Wittmann and Christine Rohde, comes into play.

“As the name bacteriophages (which is derived from the Greek ‘phagos,’ meaning ‘glutton’) suggests, these viruses ‘devour’ bacteria, effectively destroying them,” as Johannes Wittmann, a postdoctoral researcher at DSMZ, explains. “They achieve this by using a sophisticated system. The virus injects its genetic material into the bacterial cell where it is ‘read’ by the protein-making mechanisms of the bacterium, essentially reprogramming it. In this way, the phages, like tiny pirates, ‘hijack’ the bacterial cell. 

The result is the production of countless new phages. Eventually, the host cell bursts, releasing hundreds of these viruses, which in turn may destroy more bacteria.”

A new strategy for battling multi-resistant pathogens

This effective mechanism of action employed by phages, plus the fact that they are harmless to humans, might make bacteriophages a weapon in the fight against various multi-resistant infectious agents. “Phages are particularly suited to fighting pathogens because they each target only one specific species of host bacteria,” says Johannes Wittmann. “You might think of them as ‘intelligent’, self-limiting medications. They will replicate only at the site of bacterial infection, and they will do so only until all host bacteria have been used up.”

At the center of this first comprehensive scientific study of phages at DSMZ is the mobile gram-negative rod-shaped bacterium Achromobacter xylosoxidans, an opportunistic pathogen that so far has not been sufficiently investigated. Achromobacter xylosoxidans is wide spread in our natural environment, occurring both in soil and various water sources. While often harmless, it may cause severe infections, such as endocarditis, bacteriemia, and meningitis, in people with compromised immune systems.

“In medicine, the often multi-resistant pathogen Achromobacter plays a not to be ignored role in cystic fibrosis, a tragic metabolic disorder for which no cure exists today,” says Johannes Wittmann. “In patients with cystic fibrosis, this bacterium is one of several species forming biofilms in the affected lungs. These biofilms are more accessible to phages than to antibiotics. It is just these opportunistic pathogens that have hospital staff worried. We therefore consulted on this project with Charité, the Berlin university hospital.”

“We are seeing an increase in patients with opportunistic infections in recent years,” comments Professor Martin Witzenrath of the Department of Infectious Diseases and Respiratory Medicine at Charité. “In this context, pathogens that are resistant to common antibiotics such as penicillin, macrolides, and cephalosporins, present us with major therapeutic challenges. From a clinical point of view, Achromobacter is problematic as well, in particular in patients with cystic fibrosis, and we fear that we will see it much more often in the future. This illustrates an urgent unmet need for fighting pathogens that are resistant to antibiotics. Wittmann’s current study presents an important example of a new alternative strategy.”

New phages targeting Achromobacter

“Phages are best found in the same places that are inhabited by the pathogens that we suspect them to be effective against, e.g., in waste water. We have been able to readily isolate phages targeting Achromobacter from municipal water treatment plants. For screening purposes, we incubated filtrates from the plant with the host bacteria,” recalls Johannes Wittmann. “Plaques forming in the bacterial lawn on the agar plates then showed us where we would find the matching phages.”

A widely diverse range of more than 60 strains of the genus Achromobacter was used as host bacteria. They were taken from the DSMZ’s own collection as well as from culture collections in Sweden, the Czech Republic, Belgium, and Canada. Most of the strains had been isolated from clinical samples such as sputum, blood, and urine, or from the environment. They all exhibited resistance to antibiotics commonly used in hospitals. 

A total of 34 phages were isolated and characterized, and some of their genetic material has already been sequenced at DSMZ. “We were very surprised to discover that two phages belong to the rare family of N4-like phages,” says Wittmann.

“More studies are needed to test Achromobacter targeting phages for their usefulness as therapeutic phages. Then they would be added to the collection of therapeutic phages at DSMZ,” explains Christine Rohde, head of the working group. “These studies include the sequencing of the entire phage genome in order to exclude genes encoding for undesirable properties.”

The Phage Collection at DSMZ:

The specialized phage collection currently contains about 350 phages targeting a wide range of bacteria. Phages are of interest to humans because they are so closely associated with (and limited to) their individual bacterial hosts. Thus, they can be used to fight harmful bacteria, with applications in animal husbandry, agriculture, food production, and medical therapy.
https://www.dsmz.de/catalogues/catalogue-microorganisms/groups-of-organisms-and-...

DSMZ information on phages online:

DSMZ offers information on phages and their therapeutical use online at: https://www.dsmz.de/home/info-on-phages.html

Original publications:

J. Wittmann et al.: Isolation and Characterization of Numerous Novel Phages Targeting Diverse Strains of the Ubiquitous and Opportunistic Pathogen Achromobacter xylosoxidans. PLOSone (2014) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086935

J. Wittmann et.al : First genome sequences of Achromobacter phages reveal new members of the N4 family. Virology Journal 2014, 11:14 http://www.virologyj.com/content/11/1/14

Additional literature:

C. Rohde & J. Sikorski: Bakteriophagen – Vielfalt, Anwendung und ihre Bedeutung für die Wissenschaft vom Leben. Naturwiss. Rundschau (2011) 751, 5 – 14 (in German)

J. Garbe et al. (2010): Characterization of JG024, a pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiology 2010, 10:301 doi:10.1186/1471-2180-10-301

L. Kvachadze et al.: Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microbial Biotechnol. (2011) 4(5), 643-650

Media information:

You will find this press release on our web site at www.dsmz.de.

Press officer:

Susanne Thiele
Head of Public Relations
Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures
Inhoffenstrasse 7 B
38124 Braunschweig
Germany
Phone ++49531-2616-300
Fax ++49531-2616-418
susanne.thiele@dsmz.de

About the Leibniz Institute DSMZ

The Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH is a Leibniz Association institution. Offering comprehensive scientific services and a wide range of biological materials, it has been a partner for research and industry organizations worldwide for decades. DSMZ is one of the largest biological resource centers of its kind to be compliant with the internationally recognized quality norm ISO 9001:2008. As a patent depository, DSMZ currently offers the only option in Germany of accepting biological materials according to the requirements of the Budapest Treaty. The second major function of DSMZ, in addition to its scientific services, is its collection-related research. The Brunswick (Braunschweig), Germany, based collection has existed for 44 years and holds more than 49,000 cultures and biomaterials. DSMZ hosts the most diverse collection worldwide: In addition to fungi, yeasts, bacteria, and archaea, it is home to human and animal cell cultures, plant viruses, and plant cell cultures that are archived and studied there. www.dsmz.de

Leibniz Association
The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz institutions collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the importance of these institutions for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 16,500 individuals, including 7,700 researchers. The entire budget of all the institutes is approximately 1.4 billion EUR.

Weitere Informationen:

http://www.dsmz.de

Susanne Thiele | idw - Informationsdienst Wissenschaft

Further reports about: DSMZ Pirates antibiotics bacteria bacterial cystic fibrosis pathogens targeting therapeutic

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>