Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Natural Pirates Fight Multi-Resistant Pathogens

13.03.2014

Bacteriophages Offer New Strategic Options in Battling Multi-Resistant Achromobacter xylosoxidans

Infections with the often multi-resistant pathogen Achromobacter xylosoxidans are reported more and more frequently.


Adsorption of phage JWAlpha to Achromobacter DSM 11852 cells (Scanning electron micrograph) Sample was taken 5 min after pahge application. Adsorbed Phages are coloured in red.

@HZI (M.Rohde), DSMZ (J.Wittmann)


Bacteriophages are viruses that infect and replicates within bacteria (Achromobacter 90 min after infection with alpha phages)

@HZI (M.Rhode), DSMZ (J.Wittmann)

This opportunistic pathogen is for example involved in cystic fibrosis, a metabolic disorder for which no cure exists. Bacteriophages (phages for short) are natural enemies of bacteria and might provide an alternative way of effectively fighting infections, in particular hospital-acquired infections.

Johannes Wittmann, a researcher at Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig (Brunswick), Germany, has isolated and thoroughly studied various phages targeting Achromobacter xylosoxidans. His is the first study presenting a large number of diverse phages that might be used to fight this pathogen.

Further studies investigating their therapeutic potential are under way. Initial results have just been published in the scientific journals PLOS One and Virology Journal.

iruses targeting bacteria are referred to as bacteriophages, or phages for short. They have become a focus of scientific interest for rather practical reasons: As antibiotics are losing, at an alarming rate, their effectiveness in fighting multi-resistant bacterial pathogens, these natural enemies of bacteria are becoming more and more important. This is where current basic research at DSMZ, conducted by a team led by scientists Johannes Wittmann and Christine Rohde, comes into play.

“As the name bacteriophages (which is derived from the Greek ‘phagos,’ meaning ‘glutton’) suggests, these viruses ‘devour’ bacteria, effectively destroying them,” as Johannes Wittmann, a postdoctoral researcher at DSMZ, explains. “They achieve this by using a sophisticated system. The virus injects its genetic material into the bacterial cell where it is ‘read’ by the protein-making mechanisms of the bacterium, essentially reprogramming it. In this way, the phages, like tiny pirates, ‘hijack’ the bacterial cell. 

The result is the production of countless new phages. Eventually, the host cell bursts, releasing hundreds of these viruses, which in turn may destroy more bacteria.”

A new strategy for battling multi-resistant pathogens

This effective mechanism of action employed by phages, plus the fact that they are harmless to humans, might make bacteriophages a weapon in the fight against various multi-resistant infectious agents. “Phages are particularly suited to fighting pathogens because they each target only one specific species of host bacteria,” says Johannes Wittmann. “You might think of them as ‘intelligent’, self-limiting medications. They will replicate only at the site of bacterial infection, and they will do so only until all host bacteria have been used up.”

At the center of this first comprehensive scientific study of phages at DSMZ is the mobile gram-negative rod-shaped bacterium Achromobacter xylosoxidans, an opportunistic pathogen that so far has not been sufficiently investigated. Achromobacter xylosoxidans is wide spread in our natural environment, occurring both in soil and various water sources. While often harmless, it may cause severe infections, such as endocarditis, bacteriemia, and meningitis, in people with compromised immune systems.

“In medicine, the often multi-resistant pathogen Achromobacter plays a not to be ignored role in cystic fibrosis, a tragic metabolic disorder for which no cure exists today,” says Johannes Wittmann. “In patients with cystic fibrosis, this bacterium is one of several species forming biofilms in the affected lungs. These biofilms are more accessible to phages than to antibiotics. It is just these opportunistic pathogens that have hospital staff worried. We therefore consulted on this project with Charité, the Berlin university hospital.”

“We are seeing an increase in patients with opportunistic infections in recent years,” comments Professor Martin Witzenrath of the Department of Infectious Diseases and Respiratory Medicine at Charité. “In this context, pathogens that are resistant to common antibiotics such as penicillin, macrolides, and cephalosporins, present us with major therapeutic challenges. From a clinical point of view, Achromobacter is problematic as well, in particular in patients with cystic fibrosis, and we fear that we will see it much more often in the future. This illustrates an urgent unmet need for fighting pathogens that are resistant to antibiotics. Wittmann’s current study presents an important example of a new alternative strategy.”

New phages targeting Achromobacter

“Phages are best found in the same places that are inhabited by the pathogens that we suspect them to be effective against, e.g., in waste water. We have been able to readily isolate phages targeting Achromobacter from municipal water treatment plants. For screening purposes, we incubated filtrates from the plant with the host bacteria,” recalls Johannes Wittmann. “Plaques forming in the bacterial lawn on the agar plates then showed us where we would find the matching phages.”

A widely diverse range of more than 60 strains of the genus Achromobacter was used as host bacteria. They were taken from the DSMZ’s own collection as well as from culture collections in Sweden, the Czech Republic, Belgium, and Canada. Most of the strains had been isolated from clinical samples such as sputum, blood, and urine, or from the environment. They all exhibited resistance to antibiotics commonly used in hospitals. 

A total of 34 phages were isolated and characterized, and some of their genetic material has already been sequenced at DSMZ. “We were very surprised to discover that two phages belong to the rare family of N4-like phages,” says Wittmann.

“More studies are needed to test Achromobacter targeting phages for their usefulness as therapeutic phages. Then they would be added to the collection of therapeutic phages at DSMZ,” explains Christine Rohde, head of the working group. “These studies include the sequencing of the entire phage genome in order to exclude genes encoding for undesirable properties.”

The Phage Collection at DSMZ:

The specialized phage collection currently contains about 350 phages targeting a wide range of bacteria. Phages are of interest to humans because they are so closely associated with (and limited to) their individual bacterial hosts. Thus, they can be used to fight harmful bacteria, with applications in animal husbandry, agriculture, food production, and medical therapy.
https://www.dsmz.de/catalogues/catalogue-microorganisms/groups-of-organisms-and-...

DSMZ information on phages online:

DSMZ offers information on phages and their therapeutical use online at: https://www.dsmz.de/home/info-on-phages.html

Original publications:

J. Wittmann et al.: Isolation and Characterization of Numerous Novel Phages Targeting Diverse Strains of the Ubiquitous and Opportunistic Pathogen Achromobacter xylosoxidans. PLOSone (2014) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086935

J. Wittmann et.al : First genome sequences of Achromobacter phages reveal new members of the N4 family. Virology Journal 2014, 11:14 http://www.virologyj.com/content/11/1/14

Additional literature:

C. Rohde & J. Sikorski: Bakteriophagen – Vielfalt, Anwendung und ihre Bedeutung für die Wissenschaft vom Leben. Naturwiss. Rundschau (2011) 751, 5 – 14 (in German)

J. Garbe et al. (2010): Characterization of JG024, a pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiology 2010, 10:301 doi:10.1186/1471-2180-10-301

L. Kvachadze et al.: Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microbial Biotechnol. (2011) 4(5), 643-650

Media information:

You will find this press release on our web site at www.dsmz.de.

Press officer:

Susanne Thiele
Head of Public Relations
Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures
Inhoffenstrasse 7 B
38124 Braunschweig
Germany
Phone ++49531-2616-300
Fax ++49531-2616-418
susanne.thiele@dsmz.de

About the Leibniz Institute DSMZ

The Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH is a Leibniz Association institution. Offering comprehensive scientific services and a wide range of biological materials, it has been a partner for research and industry organizations worldwide for decades. DSMZ is one of the largest biological resource centers of its kind to be compliant with the internationally recognized quality norm ISO 9001:2008. As a patent depository, DSMZ currently offers the only option in Germany of accepting biological materials according to the requirements of the Budapest Treaty. The second major function of DSMZ, in addition to its scientific services, is its collection-related research. The Brunswick (Braunschweig), Germany, based collection has existed for 44 years and holds more than 49,000 cultures and biomaterials. DSMZ hosts the most diverse collection worldwide: In addition to fungi, yeasts, bacteria, and archaea, it is home to human and animal cell cultures, plant viruses, and plant cell cultures that are archived and studied there. www.dsmz.de

Leibniz Association
The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz institutions collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the importance of these institutions for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 16,500 individuals, including 7,700 researchers. The entire budget of all the institutes is approximately 1.4 billion EUR.

Weitere Informationen:

http://www.dsmz.de

Susanne Thiele | idw - Informationsdienst Wissenschaft

Further reports about: DSMZ Pirates antibiotics bacteria bacterial cystic fibrosis pathogens targeting therapeutic

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>