Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny molecules protect from the dangers of sex

15.11.2010
Pathogenic fungi have been found to protect themselves against unwanted genetic mutations during sexual reproduction, according to researchers at Duke University Medical Center. A gene-silencing pathway protects the fungal genome from mutations imposed by a partner during mating.

This pathway was discovered in Cryptococcus neoformans, a fungus that commonly infects humans, causing over one million cases of lung and brain infection each year, and more than 600,000 deaths. A related species, Cryptococcus gattii, is causing an expanding outbreak in the Pacific Northwest that is of considerable public health impact and concern.

"This discovery of how the genome is protected during sex might be leveraged as an Achilles' heel in the battle against C. neoformans, which frequently causes life-threatening illness in people," said senior author Joseph Heitman, M.D., Ph.D., chair of the Duke Department of Molecular Genetics and Microbiology. "This protective silencing effect also operates in some animals, and our studies demonstrate that the pathway operates to defend the genome during sexual reproduction."

Sexual reproduction in fungi produces airborne spores that are readily inhaled into the lungs and thought to be the source of human infections. Thus, agents that block fungal sex might stop the risk of infection at the source.

This work was published in the Nov. 15 issue of the journal Genes & Development.

C. neoformans uses a novel sex-induced RNAi (RNA interference) genome defense system that protects by effectively "silencing" the DNA, so that it is not vulnerable to repeated genes and transposable elements that could cause mutations.

The silencing system protects the genome from changes that might be imposed by transposable elements of DNA, called "jumping genes," that are also more active during the sexual cycle, said Xuying Wang, Ph.D., a postdoctoral associate who works in the Heitman lab.

Through deep sequencing of the small RNAi pieces which mediate the silencing in C. neoformans, the team also identified abundant small RNAs which map to repetitive transposable elements that could cause mutations if not silenced.

These small RNAs were absent in mutant strains (rdp1) that were studied. One group of transposable elements was greatly expressed during mating of rdp1 mutant strains and these fungi showed an increased transposition and mutation rate in the next generation, leading the researchers to conclude that the RNAi pathway squelches transposon activity during the sexual cycle.

Other authors included co-lead author Yen-Ping Hsueh, now of the California Institute of Technology, and formerly of Duke Molecular Genetics and Microbiology, as well as Wenjun Li, Anna Floyd, and Rebecca Skalsky of Duke Molecular Genetics and Microbiology. The work is supported by the National Institute of Allergy and Infectious Diseases.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>