Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny microbots that can clean up water

29.04.2016

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead from industrial wastewater from a level of 1000 parts-per-billion to down to below 50 parts-per-billion in just an hour. The lead can lat-er be removed for recycling, and the micromotors can be used over and over again.


Self-propelled microbot captures lead from contaminated water.

Copyright © 2016 American Chemical Society

“The outer shell of the microbot, which is graphene, captures the lead,” says Samuel, group leader at the Max-Planck Institute for Intelligent Systems in Stuttgart and the Institute for Bioengineering of Catalonia (IBEC) in Barcelona.

“The inner layer of platinum works as the engine, decomposing hydro-gen peroxide as fuel so that the bot can self-propel.” When hydrogen peroxide is added to the wastewater, the platinum decomposes it into harmless water and oxygen bubbles, which are ejected from the back of the microbot to propel it forward. “It’s important to use a system of pollutant re-moval that doesn’t produce any additional contamination," explains Samuel.

Between the graphene oxide and platinum layers is a layer of nickel that allows researchers to con-trol the movement and direction of the microbot magnetically from outside. “A magnetic field can be used to collect them all from the water when they’ve finished,” says Samuel.

“In the future, our microbot s swarm could be controlled by an automated system that magnetically guides them to carry out various tasks.”

Heavy metal contamination in water – by lead, arsenic, mercury and other metals – stems from in-dustrial activities and poses a serious risk to public health and wildlife. These new microbots – each one smaller than the width of a human hair – offer a solution that is potentially faster and cheaper than current methods of water cleaning, as well as being environmentally friendly: they enable the gathered pollutants to be dealt with responsibly by relinquishing the lead afterwards for recycling, as well as being reusable themselves.

Beyond the capture of heavy metal contamination, the researchers studied self-propelled microbots that are capable of degrading organic pollutants. The microbots can be recovered and reused for multiple times for up to 5 weeks without any decrease in their organic-degradation performance.

"We now plan to develop our microbots to be able to collect other contaminants, as well as reducing the cost of making them and being able to mass-produce them," says Samuel, who also works on self-propelling micro- and nanorobots for applications in areas such as drug delivery.

Weitere Informationen:

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b00768
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201600381/epdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b00768

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>