Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny marine microbes exert influence on global climate

16.07.2010
Observations show that microorganisms display a behavior characteristic of larger animals

New research indicates that the interactions of microscopic organisms around a particular organic material may alter the chemical properties of the ocean--influencing global climate by affecting cloud formation in the atmosphere.

Justin Seymour, a research fellow at the University of Technology Sydney, is the lead author of a paper reporting the results, published in this week's issue of the journal Science.

The paper describes how a relative of the chemical that seabirds and seals use to locate prey, dimethylsulfide (DMS), may serve a similar purpose at the microbial scale, helping marine microorganisms find food and cycle chemicals that are important to climate.

"These scientists have used impressive technology to study interactions between organisms and their chemical environment at the scales they actually take place," said David Garrison, director of the National Science Foundation (NSF)'s biological oceanography program, which funded the research.

"The research will give us new insights on the workings of microbial assemblages in nature."

Seymour agrees. "We found that ecological interactions and behavioral responses taking place within volumes of a fraction of a drop of seawater can ultimately influence important ocean chemical cycling processes."

Using microfluidic technology, the team of researchers, led by Roman Stocker of the Massachusetts Institute of Technology, recorded microbes swimming toward the chemical dimethylsulfoniopropionate (DMSP) as it was released into a tiny channel occupied by the microbes.

The fact that the microbes actively moved toward the DMSP indicates that the tiny organisms play a role in ocean sulphur and carbon cycles, which exert a powerful influence on Earth's climate.

How fast the microorganisms consume DMSP--rather than converting it into DMS--is important because DMS is involved in the formation of clouds in the atmosphere.

This in turn affects the heat balance of the atmosphere.

Seymour, Stocker, Rafel Simó of the Institute for Marine Sciences in Barcelona, and MIT graduate student Tanvir Ahmed carried out the research in Stocker's MIT laboratory.

The study is the first to make a visual record of microbial behaviour in the presence of DMSP.

"It's important to be able to directly look at an environment in order to understand its ecology," Stocker said.

"We can now visualize the behavior of marine microorganisms much like ecologists have done with macro-organisms for a long time."

To accomplish this, the team recreated a microcosm of the ocean environment using a microfluidic device about the size of a flash drive with minuscule channels engraved in a clear rubbery material.

The scientists injected DMSP into the channel in a way that mimics the bursting of an algal cell after viral infection--a common event in the ocean--then, using a camera attached to a microscope, they recorded whether and how microbes swam toward the chemical.

The researchers found that some marine microbes, including bacteria, are attracted to DMSP because they feed on it, whereas others are drawn to the chemical because it signals the presence of prey.

This challenges previous theories that this chemical might be a deterrent against predators.

"Our observations clearly show that, for some plankton, DMSP acts as an attractant towards prey rather than a deterrent," said Simó.

"By simulating the microscale patches of the chemical cue and directly monitoring the swimming responses of the predators towards these patches, we get a much more accurate perception of these important ecological interactions than can be obtained from traditional bulk approaches."

The research also indicates that marine microorganisms have at least one behavioral characteristic in common with larger sea and land animals: we're all drawn to food.

In next steps, the team plans to extend the research from the laboratory to the ocean environment.

The scientists are working on an experimental system that can be used on oeanographic ships working with bacteria collected directly from the ocean.

The research was also funded by the Australian Research Council, the Spanish Ministry of Science and Innovation, La Cambra de Barcelona, and the Hayashi Fund at MIT.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>