Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny marine microbes exert influence on global climate

16.07.2010
Observations show that microorganisms display a behavior characteristic of larger animals

New research indicates that the interactions of microscopic organisms around a particular organic material may alter the chemical properties of the ocean--influencing global climate by affecting cloud formation in the atmosphere.

Justin Seymour, a research fellow at the University of Technology Sydney, is the lead author of a paper reporting the results, published in this week's issue of the journal Science.

The paper describes how a relative of the chemical that seabirds and seals use to locate prey, dimethylsulfide (DMS), may serve a similar purpose at the microbial scale, helping marine microorganisms find food and cycle chemicals that are important to climate.

"These scientists have used impressive technology to study interactions between organisms and their chemical environment at the scales they actually take place," said David Garrison, director of the National Science Foundation (NSF)'s biological oceanography program, which funded the research.

"The research will give us new insights on the workings of microbial assemblages in nature."

Seymour agrees. "We found that ecological interactions and behavioral responses taking place within volumes of a fraction of a drop of seawater can ultimately influence important ocean chemical cycling processes."

Using microfluidic technology, the team of researchers, led by Roman Stocker of the Massachusetts Institute of Technology, recorded microbes swimming toward the chemical dimethylsulfoniopropionate (DMSP) as it was released into a tiny channel occupied by the microbes.

The fact that the microbes actively moved toward the DMSP indicates that the tiny organisms play a role in ocean sulphur and carbon cycles, which exert a powerful influence on Earth's climate.

How fast the microorganisms consume DMSP--rather than converting it into DMS--is important because DMS is involved in the formation of clouds in the atmosphere.

This in turn affects the heat balance of the atmosphere.

Seymour, Stocker, Rafel Simó of the Institute for Marine Sciences in Barcelona, and MIT graduate student Tanvir Ahmed carried out the research in Stocker's MIT laboratory.

The study is the first to make a visual record of microbial behaviour in the presence of DMSP.

"It's important to be able to directly look at an environment in order to understand its ecology," Stocker said.

"We can now visualize the behavior of marine microorganisms much like ecologists have done with macro-organisms for a long time."

To accomplish this, the team recreated a microcosm of the ocean environment using a microfluidic device about the size of a flash drive with minuscule channels engraved in a clear rubbery material.

The scientists injected DMSP into the channel in a way that mimics the bursting of an algal cell after viral infection--a common event in the ocean--then, using a camera attached to a microscope, they recorded whether and how microbes swam toward the chemical.

The researchers found that some marine microbes, including bacteria, are attracted to DMSP because they feed on it, whereas others are drawn to the chemical because it signals the presence of prey.

This challenges previous theories that this chemical might be a deterrent against predators.

"Our observations clearly show that, for some plankton, DMSP acts as an attractant towards prey rather than a deterrent," said Simó.

"By simulating the microscale patches of the chemical cue and directly monitoring the swimming responses of the predators towards these patches, we get a much more accurate perception of these important ecological interactions than can be obtained from traditional bulk approaches."

The research also indicates that marine microorganisms have at least one behavioral characteristic in common with larger sea and land animals: we're all drawn to food.

In next steps, the team plans to extend the research from the laboratory to the ocean environment.

The scientists are working on an experimental system that can be used on oeanographic ships working with bacteria collected directly from the ocean.

The research was also funded by the Australian Research Council, the Spanish Ministry of Science and Innovation, La Cambra de Barcelona, and the Hayashi Fund at MIT.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>