Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny knights in shining armor - bacteria detoxify deadly seawater

11.12.2008
Some marine bacteria produce hydrogen sulphide, which is toxic to animals.

Scientists now discovered that bacteria also protect marine animals from this toxic gas. A bacterial bloom detoxified a vast expanse of hydrogen sulphide-containing water off the coast of Namibia, before it could unfold its full deadly impact Hydrogen sulphide is well known for its characteristic smell of rotten eggs.

But hydrogen sulphide is not only smelly, it is also highly toxic. Humans can die within minutes when exposed to high concentrations of hydrogen sulphide. This foul-smelling gas threatens coastal fisheries, which account for 90 percent of global fish-catch. Eutrophication of coastal waters results in the episodic development of sulphidic water masses, with disastrous consequences for coastal ecosystems.

Bacteria play a dubious role in the process - after all, they are responsible for the formation of deadly hydrogen sulphide gas. However, bacteria are also responsible for detoxifying hydrogen sulphide, as researchers from the German Max-Planck-Institute for Marine Microbiology in Bremen, the Namibian National Marine Information & Research Centre, the German Baltic Sea Research Institute Warnemünde and the Department of Microbial Ecology of the University of Vienna now discovered. Their surprising results show that bacteria detoxified sulphidic coastal waters covering an area of approximately 7,000 km2 off Namibia - an area almost thrice the size of Luxembourg.

The scientists investigated the occurrence of sulphidic water masses along the coast of West Africa. In January 2004, they hit upon a sulphidic water mass covering 7,000 km2 of coastal seafloor. The surface waters, however, were well oxygenated. In the presence of oxygen, sulphide is oxidized and transformed into nontoxic forms of sulphur. Surprisingly, Lavik, Stührmann, Kuypers and their colleagues found an intermediate layer in the water column, which contained neither hydrogen sulphide nor oxygen. What had happened to the poisonous gas?

"Obviously it was oxidized anaerobically - without oxygen", Torben Stührmann explains. "Many bacteria do not require oxygen for respiration and can use nitrate instead. And indeed - we found a water layer that contained both hydrogen sulphide and nitrate."

This water layer is the habitat of detoxifying microorganisms, which are closely related to bacteria known from hot vents and cold seeps in the deep ocean. By using nitrate, these bacteria transform sulphide into finely dispersed particles of sulphur that are nontoxic. Thus, the microorganisms create a buffer zone between the toxic deep water and the oxygenated surface waters, where fish and other marine animals live.

These results, published in the journal "Nature", are not only relevant for West African fisheries. They also suggest that animals living on or near the seafloor in coastal waters all over globe may be affected by such toxic water masses more often than previously thought. Up to now, sulphidic water masses were monitored with the help of satellites, taking pictures of the sea surface while orbiting the earth. Sulphur shows up in satellite pictures as whitish/turquoise discolorations of surface water. However, many of these sulphidic events may go unnoticed by satellite because bacteria consume the hydrogen sulphide before it reaches the surface. "We assume that there are many more of these sulphidic events than previously thought", Namibian marine scientist Anja van der Plas comments. "Yet, they go unnoticed using conventional methods."

"There is a very positive as well as a worrying aspect of our discovery of a gigantic bacterial bloom detoxifying hydrogen sulphide", summarizes group leader Marcel Kuypers, "Hydrogen sulphide is toxic to higher life and even at low concentrations it will instantly kill fish, oysters, shrimps and lobsters. The good news is that the discovered groups of bacteria seem to consume the hydrogen sulphide before it reaches the surface waters where fish are living. It is worrying news, however, that an area the size of the Irish Sea or the Wadden Sea was affected by sulphidic bottom waters, without this being visible on satellite photos or detected at the monitoring stations closer to the coast."

Mass death by suffocation in coastal waters is not restricted to the coast off southwest Africa, where sulphidic events occur naturally. It has also been reported for coastal waters off India, California, the Gulf of Mexico as well as European coastal waters. "There is increasing evidence demonstrating that global warming and high anthropogenic nutrient load to coastal waters are causing more frequent coastal anoxia, which in turn increases the risk of sulphide in coastal waters", Gaute Lavik explains. "However, the fact that we can correlate sulphidic waters with certain environmental conditions might provide an opportunity to forecast these events in the future."

Background: Toxic hydrogen sulphide

Hydrogen sulphide develops in anoxic environments where sulphate respiring bacteria -so-called sulphate reducers- degrade animal or plant remains. The conspicuous smell of rotten eggs is a striking warning that this toxic gas is released. At first, the gas irritates human eyes and respiratory tracts and higher concentrations result in death by apnoea within seconds.

Some scientists think that hydrogen sulphide is responsible for mass extinctions of numerous animal and plant species in the early history of the Earth. They argue that declining oxygen concentrations in the oceans could have caused hydrogen sulphide to rise from deeper water layers. Subsequently, the toxic gas was released into the atmosphere, unfolding its deadly impact on the land ecosystem.

Fanni Aspetsberger

For further information please contact:

Dr. Marcel Kuypers 0421 2028 647
Dr. Gaute Lavik 0421 2028 651
Torben Stührmann 0421 2208 322
or the MPI press officers
Dr. Manfred Schlösser 0421 2028 704
Dr. Fanni Aspetsberger 0421 2028 704
Original article:
Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Gaute Lavik, Torben Stührmann, Volker Brüchert, Anja Van der Plas, Volker Mohrholz, Phyllis Lam, Marc Mußmann, Bernhard M. Fuchs, Rudolf Amann, Ulrich Lass & Marcel M. M. Kuypers.

DOI 10.1038/nature07588

Participating institutions:

Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
National Marine Information & Research Centre Ministry of Fisheries & Marine Resources, PO Box 912, Swakopmund, Namibia.
Baltic Sea Research Institute Warnemünde, Seestrasse 15, D-18119 Rostock, Germany.

Department of Microbial Ecology, Vienna Ecology Centre, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria

Dr. Manfred Schloesser | idw
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>