Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny knights in shining armor - bacteria detoxify deadly seawater

11.12.2008
Some marine bacteria produce hydrogen sulphide, which is toxic to animals.

Scientists now discovered that bacteria also protect marine animals from this toxic gas. A bacterial bloom detoxified a vast expanse of hydrogen sulphide-containing water off the coast of Namibia, before it could unfold its full deadly impact Hydrogen sulphide is well known for its characteristic smell of rotten eggs.

But hydrogen sulphide is not only smelly, it is also highly toxic. Humans can die within minutes when exposed to high concentrations of hydrogen sulphide. This foul-smelling gas threatens coastal fisheries, which account for 90 percent of global fish-catch. Eutrophication of coastal waters results in the episodic development of sulphidic water masses, with disastrous consequences for coastal ecosystems.

Bacteria play a dubious role in the process - after all, they are responsible for the formation of deadly hydrogen sulphide gas. However, bacteria are also responsible for detoxifying hydrogen sulphide, as researchers from the German Max-Planck-Institute for Marine Microbiology in Bremen, the Namibian National Marine Information & Research Centre, the German Baltic Sea Research Institute Warnemünde and the Department of Microbial Ecology of the University of Vienna now discovered. Their surprising results show that bacteria detoxified sulphidic coastal waters covering an area of approximately 7,000 km2 off Namibia - an area almost thrice the size of Luxembourg.

The scientists investigated the occurrence of sulphidic water masses along the coast of West Africa. In January 2004, they hit upon a sulphidic water mass covering 7,000 km2 of coastal seafloor. The surface waters, however, were well oxygenated. In the presence of oxygen, sulphide is oxidized and transformed into nontoxic forms of sulphur. Surprisingly, Lavik, Stührmann, Kuypers and their colleagues found an intermediate layer in the water column, which contained neither hydrogen sulphide nor oxygen. What had happened to the poisonous gas?

"Obviously it was oxidized anaerobically - without oxygen", Torben Stührmann explains. "Many bacteria do not require oxygen for respiration and can use nitrate instead. And indeed - we found a water layer that contained both hydrogen sulphide and nitrate."

This water layer is the habitat of detoxifying microorganisms, which are closely related to bacteria known from hot vents and cold seeps in the deep ocean. By using nitrate, these bacteria transform sulphide into finely dispersed particles of sulphur that are nontoxic. Thus, the microorganisms create a buffer zone between the toxic deep water and the oxygenated surface waters, where fish and other marine animals live.

These results, published in the journal "Nature", are not only relevant for West African fisheries. They also suggest that animals living on or near the seafloor in coastal waters all over globe may be affected by such toxic water masses more often than previously thought. Up to now, sulphidic water masses were monitored with the help of satellites, taking pictures of the sea surface while orbiting the earth. Sulphur shows up in satellite pictures as whitish/turquoise discolorations of surface water. However, many of these sulphidic events may go unnoticed by satellite because bacteria consume the hydrogen sulphide before it reaches the surface. "We assume that there are many more of these sulphidic events than previously thought", Namibian marine scientist Anja van der Plas comments. "Yet, they go unnoticed using conventional methods."

"There is a very positive as well as a worrying aspect of our discovery of a gigantic bacterial bloom detoxifying hydrogen sulphide", summarizes group leader Marcel Kuypers, "Hydrogen sulphide is toxic to higher life and even at low concentrations it will instantly kill fish, oysters, shrimps and lobsters. The good news is that the discovered groups of bacteria seem to consume the hydrogen sulphide before it reaches the surface waters where fish are living. It is worrying news, however, that an area the size of the Irish Sea or the Wadden Sea was affected by sulphidic bottom waters, without this being visible on satellite photos or detected at the monitoring stations closer to the coast."

Mass death by suffocation in coastal waters is not restricted to the coast off southwest Africa, where sulphidic events occur naturally. It has also been reported for coastal waters off India, California, the Gulf of Mexico as well as European coastal waters. "There is increasing evidence demonstrating that global warming and high anthropogenic nutrient load to coastal waters are causing more frequent coastal anoxia, which in turn increases the risk of sulphide in coastal waters", Gaute Lavik explains. "However, the fact that we can correlate sulphidic waters with certain environmental conditions might provide an opportunity to forecast these events in the future."

Background: Toxic hydrogen sulphide

Hydrogen sulphide develops in anoxic environments where sulphate respiring bacteria -so-called sulphate reducers- degrade animal or plant remains. The conspicuous smell of rotten eggs is a striking warning that this toxic gas is released. At first, the gas irritates human eyes and respiratory tracts and higher concentrations result in death by apnoea within seconds.

Some scientists think that hydrogen sulphide is responsible for mass extinctions of numerous animal and plant species in the early history of the Earth. They argue that declining oxygen concentrations in the oceans could have caused hydrogen sulphide to rise from deeper water layers. Subsequently, the toxic gas was released into the atmosphere, unfolding its deadly impact on the land ecosystem.

Fanni Aspetsberger

For further information please contact:

Dr. Marcel Kuypers 0421 2028 647
Dr. Gaute Lavik 0421 2028 651
Torben Stührmann 0421 2208 322
or the MPI press officers
Dr. Manfred Schlösser 0421 2028 704
Dr. Fanni Aspetsberger 0421 2028 704
Original article:
Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Gaute Lavik, Torben Stührmann, Volker Brüchert, Anja Van der Plas, Volker Mohrholz, Phyllis Lam, Marc Mußmann, Bernhard M. Fuchs, Rudolf Amann, Ulrich Lass & Marcel M. M. Kuypers.

DOI 10.1038/nature07588

Participating institutions:

Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
National Marine Information & Research Centre Ministry of Fisheries & Marine Resources, PO Box 912, Swakopmund, Namibia.
Baltic Sea Research Institute Warnemünde, Seestrasse 15, D-18119 Rostock, Germany.

Department of Microbial Ecology, Vienna Ecology Centre, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria

Dr. Manfred Schloesser | idw
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>