Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Insect Brains Capable of Huge Feats

14.06.2010
Insects may have tiny brains the size of a pinhead, but the latest research from the University of Adelaide shows just how clever they really are.

For the first time, researchers from the University’s Discipline of Physiology have worked out how insects judge the speed of moving objects.

It appears that insect brain cells have additional mechanisms which can calculate how to make a controlled landing on a flower or reach a food source. This ability only works in a natural setting.

In a paper published in the international journal Current Biology, lead author David O’Carroll says insects have well identified brain cells dedicated to analysing visual motion, which are very similar to humans.

“It was previously not understood how a tiny insect brain could use multiple brain pathways to judge motion,” Associate Professor O’Carroll says.

“We have known for many years that they can estimate the direction of moving objects but until now we have not known how they judge speed like other animals, including humans.

“It appears they take into account different light patterns in nature, such as a foggy morning or a sunny day, and their brain cells adapt accordingly.

“This mechanism in their brain enables them to distinguish moving objects in a wide variety of natural settings. It also highlights the fact that single neurons can exhibit extremely complex behaviour.”

Assoc. Prof. O’Carroll co-authored the paper with Paul Barnett, a Physiology PhD student at the University of Adelaide, and Dr Karin Nördstrom, a former Physiology Postdoctoral Fellow at Adelaide who is now based at Uppsala University in Sweden.

Their specific research is focused on how the brain makes sense of the world viewed by the eye, using the insect visual system as an important model.

“Insects are ideal for our research because their visual system accounts for as much as 30% of their mass, far more than most other animals,” Assoc. Prof. O’Carroll says.

His team is collaborating with industry to develop artificial eyes in robots, mimicking human and insect vision.

Associate Professor David O'Carroll
Lecturer
Discipline of Physiology
University of Adelaide
Phone: +61 8 8303 4435
Mobile: +61 418 884 388

Assoc. Prof. O’Carroll | Newswise Science News
Further information:
http://www.adelaide.edu.au

Further reports about: Physiology Tiny plants brain cell insect visual system

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>