Tiny gold probes give scientists a sense of how disease develops

Researchers have developed tiny probes comprising gold-coated particles. These can be inserted into cells, enabling diseases to be detected and monitored remotely using light from a laser.

Once the probe is inside a cell, laser light shone on to it is absorbed then re-emitted, causing nearby proteins in the cell to vibrate according to their shape.

Because molecules change shape as disease progresses, they give rise to different vibrational frequencies. Scientists can measure and interpret these vibrations, to understand how the cell is responding to disease.

Gold is used to coat the sensor because it is an unreactive metal, preventing the body from rejecting the implant. The laser technique is highly sensitive, fast and uses a low-power laser.

Scientists say the probes could be a useful tool to learn more about diseases at a very small scale, by observing how molecules interact. Further studies will look at diseases linked to the immune system in the first instance, but researchers say the technique has potential to help doctors diagnose and monitor a range of conditions.

Dr Colin Campbell, who led the research, said: “By creating a sensor that can safely be implanted into tissue and combining this with a sensitive light-measurement technique, we have developed a useful device that will help diagnose and track disease in patients.”

The research, funded by the Scottish Universities Physics Alliance, EaSTChem and the Engineering and Physical Sciences Research Council, was published in the journals Chemical Communications, the Journal of Biophotonics and ACSNano.

Media Contact

Catriona Kelly EurekAlert!

More Information:

http://www.ed.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors