Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tiny difference in the genes of bacteria

02.07.2009
Researchers from Helmholtz Center for Infection Research, Germany, develop new method for better diagnostic of diarrhea-causing bacteria

It is based on detecting short, repetitive DNA segments in the genome of bacteria. Every single bacterial strain has such characteristic repeats. "With this method we are able to identify bacterial strains as well as clarify their genetic relationships. Furthermore, we can show how new pathogenic variants develop," says Manfred Höfle, researcher at the HZI.

The results have now been published in the current issue of the scientific journal "Applied and Environmental Microbiology". The work is part of the two European Union funded projects "Healthy Water" and "AQUA-chip". Manfred Höfle is coordinator of both projects that deal with various aspects of the microbiological safety of both, drinking water and sea water.

Various bacteria that live in drinking water or sea water can cause severe human diseases. One of them are vibrios: its species Vibrio cholerae is more commonly known as the causative agent of Cholera that spread in Europe until the 20th century. Interestingly, not all Vibrio cholerae strains are pathogenic to humans. Only those strains cause severe diarrhoea known as Cholera that produce a certain bacterial toxin which attacks the intestinal wall. A less known, though also dangerous member of the genus Vibrio, is Vibrio parahaemolyticus. It is a highly contagious pathogenic germ with only a dozen ingested bacteria causing severe diarrhoea. This strain is a threat for the pacific region and reached the east coast of the United States in the 21st century. Since the end of the 1990s, Vibrio parahaemolyticus epidemics have led to thousands of cases of illness in Chile. In the future, due to ballast water or climate change, the species may also gain importance in Europe. As in the Cholera bacterium, various Vibrio parahaemolyticus strains exist with varying infectivity. Distinguishing those strains has been a challenge until now.

The newly developed method makes it now possible to characterize and distinguish hundreds of bacteria strains in a short time. The method is based on the existence of short, repetitive DNA segments in the genome of all living species. As in a tandem bike, those segments are lined up on the DNA strand, called "tandem repeats". They are characteristic for every bacterial strain. To identify a certain strain, the HZI researchers use short DNA fragments, marked with certain dyes. Each dyed DNA fragment recognizes a single tandem repeat, binding at it. As a result, the researchers receive, for example, six red fragments binding a tandem of six repetitions. Then, the researchers analyzed the tandem repeats marked with dyed fragments: Every bacteria strain differs in pattern and size of the measured tandem repeats.

"With this method, we are able to differentiate more then 120 Vibrio parahaemolyticus strains," says Manfred Höfle. This is important for infectious diseases in which it is necessary to know which strain is the causative agent. Further information are whether it is just one or more strains and where they derive from. The latter can help to prevent spreading of the disease with corresponding sanctions. "The intake of Vibrio parahaemolytics often occurs through raw clams that have filtered contaminated sea water. With this method, we are able to say from which clam species the germ originates." The new technique can also be used to characterize other bacterial pathogens and to investigate how pathogenic bacteria evolve in the environment. "Hereby, this high resolution method makes an important contribution towards a fast and precise recognition of microbial pathogens with pandemic potential."

Article: Multiple-Locus Variable-Number Tandem-Repeat Analysis for Clonal Identification of Vibrio parahaemolyticus Isolates by Using Capillary Electrophoresis. Erika Harth-Chu, Romilio T. Espejo, Richard Christen, Carlos A. Guzmán, and Manfred G. Höfle. Appl. Environ. Microbiol. 2009; 75: 4079-4088

Dr. Bastian Dornbach | EurekAlert!
Further information:
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>