Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tiny difference in the genes of bacteria

02.07.2009
Researchers from Helmholtz Center for Infection Research, Germany, develop new method for better diagnostic of diarrhea-causing bacteria

It is based on detecting short, repetitive DNA segments in the genome of bacteria. Every single bacterial strain has such characteristic repeats. "With this method we are able to identify bacterial strains as well as clarify their genetic relationships. Furthermore, we can show how new pathogenic variants develop," says Manfred Höfle, researcher at the HZI.

The results have now been published in the current issue of the scientific journal "Applied and Environmental Microbiology". The work is part of the two European Union funded projects "Healthy Water" and "AQUA-chip". Manfred Höfle is coordinator of both projects that deal with various aspects of the microbiological safety of both, drinking water and sea water.

Various bacteria that live in drinking water or sea water can cause severe human diseases. One of them are vibrios: its species Vibrio cholerae is more commonly known as the causative agent of Cholera that spread in Europe until the 20th century. Interestingly, not all Vibrio cholerae strains are pathogenic to humans. Only those strains cause severe diarrhoea known as Cholera that produce a certain bacterial toxin which attacks the intestinal wall. A less known, though also dangerous member of the genus Vibrio, is Vibrio parahaemolyticus. It is a highly contagious pathogenic germ with only a dozen ingested bacteria causing severe diarrhoea. This strain is a threat for the pacific region and reached the east coast of the United States in the 21st century. Since the end of the 1990s, Vibrio parahaemolyticus epidemics have led to thousands of cases of illness in Chile. In the future, due to ballast water or climate change, the species may also gain importance in Europe. As in the Cholera bacterium, various Vibrio parahaemolyticus strains exist with varying infectivity. Distinguishing those strains has been a challenge until now.

The newly developed method makes it now possible to characterize and distinguish hundreds of bacteria strains in a short time. The method is based on the existence of short, repetitive DNA segments in the genome of all living species. As in a tandem bike, those segments are lined up on the DNA strand, called "tandem repeats". They are characteristic for every bacterial strain. To identify a certain strain, the HZI researchers use short DNA fragments, marked with certain dyes. Each dyed DNA fragment recognizes a single tandem repeat, binding at it. As a result, the researchers receive, for example, six red fragments binding a tandem of six repetitions. Then, the researchers analyzed the tandem repeats marked with dyed fragments: Every bacteria strain differs in pattern and size of the measured tandem repeats.

"With this method, we are able to differentiate more then 120 Vibrio parahaemolyticus strains," says Manfred Höfle. This is important for infectious diseases in which it is necessary to know which strain is the causative agent. Further information are whether it is just one or more strains and where they derive from. The latter can help to prevent spreading of the disease with corresponding sanctions. "The intake of Vibrio parahaemolytics often occurs through raw clams that have filtered contaminated sea water. With this method, we are able to say from which clam species the germ originates." The new technique can also be used to characterize other bacterial pathogens and to investigate how pathogenic bacteria evolve in the environment. "Hereby, this high resolution method makes an important contribution towards a fast and precise recognition of microbial pathogens with pandemic potential."

Article: Multiple-Locus Variable-Number Tandem-Repeat Analysis for Clonal Identification of Vibrio parahaemolyticus Isolates by Using Capillary Electrophoresis. Erika Harth-Chu, Romilio T. Espejo, Richard Christen, Carlos A. Guzmán, and Manfred G. Höfle. Appl. Environ. Microbiol. 2009; 75: 4079-4088

Dr. Bastian Dornbach | EurekAlert!
Further information:
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>