Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Cell Patterns Reveal the Progression of Development and Disease

29.06.2011
Scientists have long known that, to form tissue structures and organs, stem cells migrate and differentiate in response to the other cells, matrix, and signals in their environment. But not much is known about these developmental processes nor how to distinguish between normal and pathological behaviors.

A team of researchers at Columbia Engineering School has developed a new technique to evaluate human stem cells using cell micropatterning — a simple but powerful in vitro tool that will enable scientists to study the initiation of left-right asymmetry during tissue formation, to diagnose disease, and to study factors that could lead to certain birth defects.

The study, led by Gordana Vunjak-Novakovic, Professor of Biomedical Engineering at Columbia University’s Fu Foundation School of Engineering and Applied Science, will be published in the online Early Edition of the Proceedings of the National Academy of Sciences the week of June 27, 2011.

Vunjak-Novakovic and her team have long been interested in developing technologies to investigate developmental processes of cells. In 2008 Leo Wan, a postdoctoral scientist from her lab, printed human cells onto microscopically small patterns to investigate the shape-force control of cell function; this study helped them learn more about the connections between mechanical tension generated inside the cell and the decisions that cells make.

As they looked into the numerous videos they made to document and analyze the shapes of cells on micropatterns over time in culture, they noticed that the cell populations on micropatterns had a life of their own. These small communities of cells would undergo directional motion and form chiral alignment after a day or two of culture, with all cells moving in the same direction within the boundaries. Vunjak-Novakovic said “It was really the consistency of this motion pattern – the same cell type would always take the same direction with extremely high statistical power – that was intriguing and made us do hundreds of experiments.”

They found that the direction of motion depended on cell type — that normal cells and cancer cells of the same type show opposite direction of motion, and that the mechanism by which the directional motion is established involves the actin stress fibers inside the cell. “What’s really interesting about this work is that it shows that cells can establish a consistently biased asymmetry without the help of large-scale embryonic structures,” said Vunjak-Novakovic. “Our study clearly demonstrated that mammalian cells could establish and organize consistent asymmetry without cilia or node, a finding of great interest to those of us in cell and both developmental biology and stem cell bioengineering. The use of cell patterning techniques for studying cell asymmetry, or chirality, is entirely novel, and it enables obtaining a lot of biological and medical information by analyzing cell motion on tiny patterns.”

Vunjak-Novakovic and her team plan to extend their research in several directions, by working:

• with developmental biologists to get deeper insights into the establishment of left-right asymmetry

• with cancer biologists to evaluate the capacity of this technology to diagnose disease

• in cardiac tissue engineering to pattern signal propagation in cell populations.

“We are very excited about developing this technology that gives us insights into the small world of the cells, in a way that is predictive of their behavior in the whole organism,” added Vunjak-Novakovic. “But what’s also really striking are the images of cells on micropatterns — these are the most beautiful hybrids of art and science I have ever seen!’

Columbia has filed a patent application covering potential commercial applications of the discovery and, through its technology transfer office, Columbia Technology Ventures, is seeking partners to develop these applications.

Vunjak-Novakovic’s study was supported by the National Institutes of Health (NIH) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB), through a Tissue Engineering Resource Center grant.

Columbia Engineering
Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society’s more vexing challenges. http://www.engineering.columbia.edu/
Columbia Technology Ventures
A leading academic and research university, Columbia University continually seeks to advance the frontiers of knowledge and to foster a campus community deeply engaged in understanding and addressing the complex global issues of our time. Columbia University's technology transfer office, Columbia Technology Ventures, manages Columbia's intellectual property portfolio and serves as the university's gateway for companies and entrepreneurs seeking novel technology solutions. Our core mission is to facilitate the transfer of inventions from academic research to outside organizations for the benefit of society on a local, national and global basis. For more information on Columbia Technology Ventures, please visit www.techventures.columbia.edu.

Holly Evarts | Newswise Science News
Further information:
http://www.columbia.edu
http://www.techventures.columbia.edu

More articles from Life Sciences:

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

nachricht Warming temperatures threaten sea turtles
22.06.2017 | Swansea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New technique makes brain scans better

22.06.2017 | Medical Engineering

CWRU researchers find a chemical solution to shrink digital data storage

22.06.2017 | Life Sciences

Warming temperatures threaten sea turtles

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>