Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny capsules deliver

14.01.2009
A tiny particle syringe composed of polymer layers and nanoparticles may provide drug delivery that targets diseased cells without harming the rest of the body, according to a team of chemical engineers. This delivery system could be robust and flexible enough to deliver a variety of substances.

"People probably fear the effects of some treatments more than they fear the disease they treat," says Huda A. Jerri, graduate student, chemical engineering. "The drugs are poison. Treatment is a matter of dosage so that it kills the cancer and not the patient. Targeted treatment becomes very important."

Newer approaches to drug delivery include particles that find specific cells, latch on and release their drugs. Another approach allows the cells to engulf the particles, taking them into the cell and releasing the drug. However, the requirements for these delivery systems are complicated and challenging to implement.

The Penn State researchers' approach produces a more universal delivery system, a tiny spherical container averaging less than 5 microns or the diameter of the smallest pollen grains.

The spheres are formed around solid microparticles that are either the drug to be delivered or a substance that can be removed later leaving a hollow sphere for liquid drugs. They reported their results online in Soft Matter.

Alternating positive and negative layers of material form the microcapsules. The capsules are created while attached to a flat surface so the section of the sphere touching the surface is not coated, leaving about 5 percent of the surface as an escape area for the drugs. The microcapsule, excluding the exit hole, is then covered in a slippery, non-stick barrier coating.

"These are not the first microcapsules for drug delivery developed, but a previous attempt had surfaces that stuck together and clumped," says Velegol. "We also designed the tiny hole in the sphere for controlled delivery and that is a new development."

Targeted drug delivery systems release their drug from the moment they enter the body. The microsyringes, however, while releasing material continuously, do so only from the tiny hole in their surface and not from the other 95 percent of the sphere's surface. This will concentrate the drug at the target and reduce the amount of toxins circulating in the body.

"These particles are delivery vessels to which you can add whatever you want when you need it," says Jerri. "Drugs can be either solid -- incorporated when the capsules are made -- or liquid -- filled later. Chemicals that target the diseased cells can be attached in a variety of ways."

To serve as viable, flexible drug delivery systems, these microcapsules should be off the shelf and not completely tailor made for each application. The researchers tested the robustness of the microsyringes by dehydrating and then reconstituting them. Their ability to withstand long periods dried out and then successfully rehydrate is important both for shelf life and because that is the way that liquid medications will be inserted in the microcapsules as needed.

To ensure that the spheres refill, the researchers used a solution containing fluorescent dyes. The filling and emptying of the microcapsules are controlled by the acidity of the liquid in which the tiny beads float. Successful rehydration and filling suggest that these microsyringes could be manufactured and stored until needed. They could then be filled with the appropriate drug and have the proper targeting agent attached to treat specific diseases and patients.

"The masking process used to manufacture these microcapsules is relatively inexpensive, current technology and is scalable," says Velegol. "This means they could be mass produced."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>