Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny antibody fragments raised in camels find drug targets in human breast cancer cells

12.04.2011
New research in the FASEB Journal suggests that new ¡°Nanobody¡± agents can identify which, if any, breast cancer drugs are likely to work in individual patients

A new discovery published online in The FASEB Journal (http://www.fasebj.org) promises to help physicians identify patients most likely to benefit from breast cancer drug therapies.

If the compound, called "Nanobody," proves effective in clinical trials, it would represent a significant advance for breast cancer drug therapy because some drugs are effective only in some people. In addition, some drugs have side effects that may cause damage to vital organs, making it more crucial for physicians to get the right treatment to the right patient the first time around.

"What makes Nanobodies so promising is that they are robust, small enough for rapid elimination from the body, and easy to produce at a relatively low cost," said Ilse Vaneycken, M.Sc., a researcher involved in the work.

To make this discovery, Vaneycken and her colleagues started with the target of the therapeutic drugs (HER2) and immunized a dromedary camel to raise special antibodies unique to this species. Next, all unnecessary parts of the camel's antibodies were removed and cloned in bacteria. Of 100 million bacterial clones, the team selected those that produced the 40 Nanobodies that recognized¨D or bound to¨Dthe same site targeted by therapeutic drugs. Of this group, the team screened for compounds that picked out breast cancer cells bearing the genetic tag HER2. Their lead compound did just that, and without blocking access to cancer-killing drugs now in use. Other properties of Nanobodies, such as good expression, stability, and visibility¨Denabled breast cancer tumors to be stained and seen rapidly¨Dwere also exploited.

"The scientists went over the hump to get to the lump so to speak," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This technique not only promises to help doctors target cancer cells with effective drugs today, but to pick out other discrete cancer targets in the future."

Receive monthly highlights from The FASEB Journal by e-mail or updates as they happen on Facebook. Sign up at http://www.faseb.org/fjupdate.aspx or "like" the Federation of American Societies for Experimental Biology on Facebook. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve¡ªthrough their research¡ªthe health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Ilse Vaneycken, Nick Devoogdt, Naomi Van Gassen, C¨¦cile Vincke, Catarina Xavier, Ulrich Wernery, Serge Muyldermans, Tony Lahoutte, and Vicky Caveliers. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. doi:10.1096/fj.10-180331 ; http://www.fasebj.org/content/early/2011/04/08/fj.10-180331.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>