Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny antibody fragments raised in camels find drug targets in human breast cancer cells

New research in the FASEB Journal suggests that new ¡°Nanobody¡± agents can identify which, if any, breast cancer drugs are likely to work in individual patients

A new discovery published online in The FASEB Journal ( promises to help physicians identify patients most likely to benefit from breast cancer drug therapies.

If the compound, called "Nanobody," proves effective in clinical trials, it would represent a significant advance for breast cancer drug therapy because some drugs are effective only in some people. In addition, some drugs have side effects that may cause damage to vital organs, making it more crucial for physicians to get the right treatment to the right patient the first time around.

"What makes Nanobodies so promising is that they are robust, small enough for rapid elimination from the body, and easy to produce at a relatively low cost," said Ilse Vaneycken, M.Sc., a researcher involved in the work.

To make this discovery, Vaneycken and her colleagues started with the target of the therapeutic drugs (HER2) and immunized a dromedary camel to raise special antibodies unique to this species. Next, all unnecessary parts of the camel's antibodies were removed and cloned in bacteria. Of 100 million bacterial clones, the team selected those that produced the 40 Nanobodies that recognized¨D or bound to¨Dthe same site targeted by therapeutic drugs. Of this group, the team screened for compounds that picked out breast cancer cells bearing the genetic tag HER2. Their lead compound did just that, and without blocking access to cancer-killing drugs now in use. Other properties of Nanobodies, such as good expression, stability, and visibility¨Denabled breast cancer tumors to be stained and seen rapidly¨Dwere also exploited.

"The scientists went over the hump to get to the lump so to speak," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This technique not only promises to help doctors target cancer cells with effective drugs today, but to pick out other discrete cancer targets in the future."

Receive monthly highlights from The FASEB Journal by e-mail or updates as they happen on Facebook. Sign up at or "like" the Federation of American Societies for Experimental Biology on Facebook. The FASEB Journal ( is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve¡ªthrough their research¡ªthe health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Ilse Vaneycken, Nick Devoogdt, Naomi Van Gassen, C¨¦cile Vincke, Catarina Xavier, Ulrich Wernery, Serge Muyldermans, Tony Lahoutte, and Vicky Caveliers. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. doi:10.1096/fj.10-180331 ;

Cody Mooneyhan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>