Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tinnitus in a computer model

15.09.2008
Scientists from Berlin study how hearing loss can lead to tinnitus

Tinnitus, i.e. the perception of phantom sounds in the absence of an acoustic stimulus, can be caused by hearing loss. Under which circumstances does this occur? Which mechanisms are involved? Roland Schaette and Richard Kempter from the Bernstein Center for Computational Neuroscience and the Humboldt University in Berlin found answers to these questions using computer simulations.

Tinnitus arises in the auditory pathway of the central nervous system. In animal studies, tinnitus-like activity of neurons - so-called hyperactivity - has been found in the dorsal cochlear nucleus (DCN), the first processing stage for acoustic information in the brain. Neurons of the DCN receive input directly from the auditory nerve and react to it with neuronal discharges - one says, they "fire".

Even without any acoustic signals, however, cells of the auditory nerve and the auditory pathway are still active and fire spontaneously at a certain rate, the "spontaneous firing rate" - comparable to the background noise produced by electrical devices. Various studies suggest that hearing loss can increase the spontaneous firing rate of nerve cells in the DCN and that animals perceive this as a kind of tinnitus. In a theoretical model, Schaette and Kempter explain the link between tinnitus and hearing loss for the first time.

After hearing loss, auditory nerve fibers and neurons along the auditory pathway only react to loud sounds. For soft sounds below the increased hearing threshold, the neurons fire spontaneously. Many neurons thus show an overall reduced activity. This could trigger a mechanism called "homeostatic plasticity", which ensures that neuronal activity is neither too high nor too low. If the average activity of the neurons is too low, homeostasis enhances their sensitivity. As the scientists could show in their model, neurons then react more strongly to the activity of the auditory nerve; in particular the spontaneous firing rate increases.

Moreover, Schaette and Kempter also demonstrated in their model that this mechanism only applies to certain types of neurons - for example to type III neurons of the DCN. These neurons are primarily activated by sound. Therefore, their average activity initially drops after hearing loss and the mechanism described above is initiated: homeostasis has to counteract this loss in activity and elevate firing rates, which then also leads to an increased spontaneous firing rate.

In contrast, type IV neurons are either activated or inhibited by sound, depending on sound intensity. Hearing loss only has a minor effect on their average activity. Accordingly, these neurons are less susceptible to hyperactivity. This prediction of the Berlin scientists' model corresponds with experimental findings: In rodents type III neurons dominate in the DCN. Here, tinnitus-like hyperactivity has been observed. In contrast, such an activity has not yet been found in cats, whose DCN mainly holds type IV neurons.

"Our studies have corroborated the association between hearing loss and tinnitus, which could provide a foundation for new treatment strategies," Kempter states. "Our hope would be that a tailored exposure to acoustic signals over an appropriate frequency range could help to drive back the hyperactivity caused by hearing loss".

Original publication:
Schaette R, Kempter R: Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Europ J Neurosci 23:3124-38 (2006). doi: 10.1111/j.1460-9568.2006.04774.x

Schaette R, Kempter R: Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type. Hear Res 240:57-72 (2008). doi:10.1016/j.heares.2008.02.006

Contact:
Dr. Richard Kempter
Dr. Roland Schaette
Institute for Biology
Department of Theoretical Biology (???)
Humboldt-Universität zu Berlin
Invalidenstraße 43, 10115 Berlin
Tel: + 49 30-2093-8925 (Richard Kempter)
+ 49 30-2093-8926 (Roland Schaette)

Dr. Katrin Weigmann | idw
Further information:
http://www.bernstein-netzwerk.de
http://www.nncn.de
http://www.bccn-berlin.de

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>