Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tinnitus in a computer model

15.09.2008
Scientists from Berlin study how hearing loss can lead to tinnitus

Tinnitus, i.e. the perception of phantom sounds in the absence of an acoustic stimulus, can be caused by hearing loss. Under which circumstances does this occur? Which mechanisms are involved? Roland Schaette and Richard Kempter from the Bernstein Center for Computational Neuroscience and the Humboldt University in Berlin found answers to these questions using computer simulations.

Tinnitus arises in the auditory pathway of the central nervous system. In animal studies, tinnitus-like activity of neurons - so-called hyperactivity - has been found in the dorsal cochlear nucleus (DCN), the first processing stage for acoustic information in the brain. Neurons of the DCN receive input directly from the auditory nerve and react to it with neuronal discharges - one says, they "fire".

Even without any acoustic signals, however, cells of the auditory nerve and the auditory pathway are still active and fire spontaneously at a certain rate, the "spontaneous firing rate" - comparable to the background noise produced by electrical devices. Various studies suggest that hearing loss can increase the spontaneous firing rate of nerve cells in the DCN and that animals perceive this as a kind of tinnitus. In a theoretical model, Schaette and Kempter explain the link between tinnitus and hearing loss for the first time.

After hearing loss, auditory nerve fibers and neurons along the auditory pathway only react to loud sounds. For soft sounds below the increased hearing threshold, the neurons fire spontaneously. Many neurons thus show an overall reduced activity. This could trigger a mechanism called "homeostatic plasticity", which ensures that neuronal activity is neither too high nor too low. If the average activity of the neurons is too low, homeostasis enhances their sensitivity. As the scientists could show in their model, neurons then react more strongly to the activity of the auditory nerve; in particular the spontaneous firing rate increases.

Moreover, Schaette and Kempter also demonstrated in their model that this mechanism only applies to certain types of neurons - for example to type III neurons of the DCN. These neurons are primarily activated by sound. Therefore, their average activity initially drops after hearing loss and the mechanism described above is initiated: homeostasis has to counteract this loss in activity and elevate firing rates, which then also leads to an increased spontaneous firing rate.

In contrast, type IV neurons are either activated or inhibited by sound, depending on sound intensity. Hearing loss only has a minor effect on their average activity. Accordingly, these neurons are less susceptible to hyperactivity. This prediction of the Berlin scientists' model corresponds with experimental findings: In rodents type III neurons dominate in the DCN. Here, tinnitus-like hyperactivity has been observed. In contrast, such an activity has not yet been found in cats, whose DCN mainly holds type IV neurons.

"Our studies have corroborated the association between hearing loss and tinnitus, which could provide a foundation for new treatment strategies," Kempter states. "Our hope would be that a tailored exposure to acoustic signals over an appropriate frequency range could help to drive back the hyperactivity caused by hearing loss".

Original publication:
Schaette R, Kempter R: Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Europ J Neurosci 23:3124-38 (2006). doi: 10.1111/j.1460-9568.2006.04774.x

Schaette R, Kempter R: Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type. Hear Res 240:57-72 (2008). doi:10.1016/j.heares.2008.02.006

Contact:
Dr. Richard Kempter
Dr. Roland Schaette
Institute for Biology
Department of Theoretical Biology (???)
Humboldt-Universität zu Berlin
Invalidenstraße 43, 10115 Berlin
Tel: + 49 30-2093-8925 (Richard Kempter)
+ 49 30-2093-8926 (Roland Schaette)

Dr. Katrin Weigmann | idw
Further information:
http://www.bernstein-netzwerk.de
http://www.nncn.de
http://www.bccn-berlin.de

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>