Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right first time: Pioneering new methods of drug manufacture

12.11.2009
Engineers at the University of Leeds have developed a simple technology which can be used in existing chemical reactors to ensure "right first time" drug crystal formation.

Ensuring drug crystals are formed correctly is crucial to their efficacy and the efficiency of pharmaceutical manufacturers' operations.

Using self-assembled monolayers, the team has been able to show that crystals form into their desired product form with the correct shape and particle structure, without the usual problems of polymorphism which results in huge losses to the pharmaceutical sector each year.

"If you imagine the way that oil sits on top of water, that's similar to how the monolayer works," says Professor Kevin Roberts of University's Faculty of Engineering. "We've shown that we can produce a well-defined crystal structure using a self-assembled monolayer bound onto a metal substrate within a regular reactor. This is exciting stuff, because it's a relatively simple system, but could make a huge difference in the efficiency of drug manufacture."

One of the first stages of the crystallisation process is called nucleation. During nucleation, particles are introduced into a reactor to encourage the formation of crystals. However, the way in which this is currently carried out is difficult to control and can often lead to the wrong shape, size or structure of drug crystal, something which affects the usefulness and efficacy of the compound.

The new system proven to work by the Leeds team, working alongside Ana Kwokal from Croatian pharmaceutical company PLIVA, has shown that introducing a self-assembled monolayer – a layer of self-organising molecules that is attractive to the substance being crystallised – into a reactor enables consistent crystal formation.

Professor Roberts says: "Because this is a really simple solution to ensuring consistent crystallisation, it has huge potential commercially. Our next steps are to make sure it's just as efficient on an industrial scale."

This work draws on previous research and experimental systems developed through the Chemicals Behaving Badly II initiative, an Engineering and Physical Sciences Research Council (EPSRC) programme which includes universities and industrial partners.

Clare Elsley | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>