Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tilted microscopy technique better reveals protein structures

04.07.2017

The conventional way of placing protein samples under an electron microscope during cryo-EM experiments may fall flat when it comes to getting the best picture of a protein's structure. In some cases, tilting a sheet of frozen proteins -- by anywhere from 10 to 50 degrees -- as it lies under the microscope, gives higher quality data and could lead to a better understanding of a variety of diseases, according to new research led by Salk scientist Dmitry Lyumkis.

"People have tried to implement tilting before, but there have been a lot of challenges," says Lyumkis, a Helmsley-Salk Fellow at the Salk Institute and senior author of the new work, published July 3 in Nature Methods. "We've eliminated many of these problems with our new approach."


Salk Institute researcher describes new cryo-EM method to facilitate a better understanding of proteins involved in disease. Just as looking at soup cans from different angles allows you to see different shapes, viewing proteins at a tilt reveals different aspects of their structure.

Credit: Salk Institute

Cryo-EM, or cryo-electron microscopy, is a form of transmission electron microscopy in which samples are quickly cooled to below freezing before being imaged under the microscope. Unlike other methods commonly used to determine the structure of proteins, cryo-EM lets proteins remain in their natural conformations for imaging, which could reveal new information about the structures. Understanding proteins' structures is a vital step to developing new therapies for disease, such as in the case of HIV.

Researchers have long assumed that proteins adopt random conformations throughout the frozen grid that's prepared for cryo-EM experiments, which means that by taking enough images, researchers can put together a full, 3D picture of the protein's shape(s) from all imaging directions. But for many proteins, the approach seems to fall short, and parts of the proteins' structures remain missing.

"Researchers are starting to think that the proteins on a cryo-EM grid don't adopt random conformations after all, but rather stick to the top or bottom of the sample grid in preferred orientations," says Lyumkis. "Thus we may not be getting the full picture of proteins' structures. More importantly, this behavior can prohibit structure determination altogether for select protein samples."

To understand the problem, imagine trying to look at the shadows of a dozen tin cans to figure out their shape but seeing only circles because all the cans are exactly upright. By making the light--or electron beam, in the case of cryo-EM -- hit the samples at an angle, though, you'd be able to see the true shape better.

When researchers have tried to tilt samples under a microscope in the past, they've been limited by poor resolution: an angle means that the electron beam has to travel through a thicker grid. Samples are also more likely to move within the frozen grid when they're tilted, blurring out the data. And technically, analyzing data from a tilted sample is also more challenging, since cryo-EM methods were designed with the assumption that the grid containing proteins was always at the same distance from the microscope.

To tackle these challenges, Lyumkis and his colleagues changed the materials used to create the cryo-EM grid, recorded movies of their data rather than still images, and developed new computational methods to analyze the information.

When they tested the new approach on the influenza hemagglutinin protein, a notoriously hard protein to characterize using cryo-EM, the team found that tilting the sample gave a more complete dataset. When the protein sample was flat, typical algorithms introduced false positive shape to the protein that wasn't backed up by experimental data. That wasn't the case when it was tilted.

"Due to the geometry of the data collection when we tilt, we fill up much more data characterizing the molecules, giving us a more complete picture of the protein's shape" says Lyumkis.

The algorithms that Lyumkis and his team developed -- which include ways to analyze whether a cryo-EM experiment is introducing bad data, as well as the methods to interpret a tilted experiment -- are now openly available. They hope other researchers will start using them and that it becomes a standard metric for cryo-EM structure validation (since most experimentally derived structures suffer from missing information to different extents).

"One of the ideas we're looking at now is whether data collection should always be performed at a tilt rather than in the conventional way," says Lyumkis. "It won't hurt and it should help."

###

Other researchers on the study were Yong Zi Tan, Philip Baldwin, Clinton Potter and Bridget Carragher of the New York Structural Biology Center, and Joseph David and James Williamson of The Scripps Research Institute.

The work and the researchers involved were supported by grants from the Agency for Science, Technology, and Research Singapore, the Leona M. and Harry B. Helmsley Charitable Trust, the U.S. National Institutes of Health, the Jane Coffin Childs Foundation, the National Institute of Aging, the National Institute of General Medical Sciences and the Simons Foundation.

About the Salk Institute for Biological Studies: Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>