Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tilapia fish: Ready for mating at the right time

01.09.2014

Researchers identify a pheromone in the urine of male tilapia fish that stimulates spawning in females

The exchange of chemical signals between organisms is considered the oldest form of communication. Acting as messenger molecules, pheromones regulate social interactions between conspecifics, for example, the sexual attraction between males and females. Fish rely on pheromones to trigger social responses and to coordinate reproductive behavior in males and females.


Male Mozambique tilapia (Oreochromis mossambicus).

© Olinda G. Almeida / Peter C. Hubbard, Centre of Marine Sciences (CCMAR), Universität der Algarve, Faro, Portugal


Rival male Mozambique tilapias in an aquarium: The dominant male (right) defends the nest, an excavation in the sand he made with his mouth. Females take up the eggs in their mouths, once they have been externally fertilized in the nest by the males. Oral incubation is a strategy for protecting offspring.

© Peter C. Hubbard / Olinda G. Almeida, University of the Algarve, Faro, Portugal

Scientists at the Marine Science Center at the University of the Algarve in Faro, Portugal, and at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now identified such a signal molecule in the urine of male Mozambique tilapia (Oreochromis mossambicus): this pheromone boosts hormone production and accelerates oocyte maturation in reproductive females. Hence, the Mozambique tilapia is one of the first fish species in which the chemical structure of a pheromone has been identified and the biological basis of its activity elucidated.

The social behavior of Mozambique tilapias (Oreochromis mossambicus) native to southern Africa is very complex. The strict hierarchic ranking among males is fought out in so-called courtship arenas. With their mouths, male tilapias make excavations in the sand in the middle of an arena with the aim of attracting females to spawn in these nests.

At the same time, they act aggressively to keep other males away. Dominant males have been observed to urinate more often and squirt larger quantities of urine in the water during fights compared to their subordinate rivals. The urine contains pheromones that reduce aggressive behavior in other males. The compounds also lure females to the nest and modify their hormonal status by accelerating oocyte maturation. Thus the pheromones help to synchronize female spawning and external fertilization by the males and so to increase the odds of reproductive success.

Tilapias also show this behavior in captivity, which makes them an ideal model system for reproducible biological assays. Tina Keller-Costa and her colleagues at the Marine Science Center at the University of the Algarve in Faro, Portugal, as well as the Biosynthesis/NMR Research Group at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now identified the chemical structure of the signaling molecules in tilapia males and studied their function. She collected urine samples from dominant males and purified the samples in several steps, testing them for biological activity as pheromones after each step.

Two steroids as main components in the urine

This procedure resulted in two pure substances whose chemical structures were elucidated using nuclear magnetic resonance spectroscopy (NMR). Their identity was confirmed by chemical synthesis: “The two structures are stereoisomers or mirror images of a pregnane-type steroid linked to glucuronic acid,” Bernd Schneider, the head of the NMR lab in Jena, said, summarizing the results of the analysis.

Both males and females showed highly sensitive responses to the odor of these two steroids. Although the two pheromone components stimulate the hormonal system of the females and trigger spawning, they are not by themselves capable of reducing aggressive behavior in rival males. The researchers thus assume that the urine of dominant males must contain additional yet-to-be identified substances that contribute to this effect in a complex mixture.

Until now only very few fish pheromones have been chemically identified. “Our discovery will allow for further investigations, for example, of the mechanisms of perception and processing of these chemical signals by the brain in order to originate a response, in this case oocyte maturation and behavioral changes,” says Tina Keller-Costa, who conducted the experiments for her PhD thesis.

Ways to control invasive fish species and benefits for the aquaculture of food fish

Apart from the carp family, tilapias belong to the most important edible fish raised commercially. However, their aquaculture in many tropical and subtropical waters has led to an uncontrolled population growth and spread of the species. The use of pheromones could help optimize the aquaculture of tilapia species by increasing female fertility and reducing aggression between competing males. Pheromones could also help to control the invasive behavior of these fish, which threatens the ecological balance of many ecosystems.

Contact 

Dr. Bernd Schneider

Max Planck Institute for Chemical Ecology, Jena

Phone: +49 3641 57-1600

 

Angela Overmeyer

Press and Public Relations

Max Planck Institute for Chemical Ecology, Jena

Phone: +49 3641 57-2110

 

Original publication

 
Keller-Costa, T., Hubbard, P.C., Paetz, C., Nakamura, Y., da Silva, J. P., Rato, A., Barata, E. N., Schneider, B., Canario, A. V. M.
Identity of a tilapia pheromone released by dominant males that primes females for reproduction.
Current Biology, DOI: 10.1016/j.cub.2014. 07.049

Dr. Bernd Schneider | Max-Planck-Institut

Further reports about: Chemical Ecology aquaculture females invasive pheromones publication species steroids tilapia urine

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>