Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tilapia fish: Ready for mating at the right time

01.09.2014

Researchers identify a pheromone in the urine of male tilapia fish that stimulates spawning in females

The exchange of chemical signals between organisms is considered the oldest form of communication. Acting as messenger molecules, pheromones regulate social interactions between conspecifics, for example, the sexual attraction between males and females. Fish rely on pheromones to trigger social responses and to coordinate reproductive behavior in males and females.


Male Mozambique tilapia (Oreochromis mossambicus).

© Olinda G. Almeida / Peter C. Hubbard, Centre of Marine Sciences (CCMAR), Universität der Algarve, Faro, Portugal


Rival male Mozambique tilapias in an aquarium: The dominant male (right) defends the nest, an excavation in the sand he made with his mouth. Females take up the eggs in their mouths, once they have been externally fertilized in the nest by the males. Oral incubation is a strategy for protecting offspring.

© Peter C. Hubbard / Olinda G. Almeida, University of the Algarve, Faro, Portugal

Scientists at the Marine Science Center at the University of the Algarve in Faro, Portugal, and at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now identified such a signal molecule in the urine of male Mozambique tilapia (Oreochromis mossambicus): this pheromone boosts hormone production and accelerates oocyte maturation in reproductive females. Hence, the Mozambique tilapia is one of the first fish species in which the chemical structure of a pheromone has been identified and the biological basis of its activity elucidated.

The social behavior of Mozambique tilapias (Oreochromis mossambicus) native to southern Africa is very complex. The strict hierarchic ranking among males is fought out in so-called courtship arenas. With their mouths, male tilapias make excavations in the sand in the middle of an arena with the aim of attracting females to spawn in these nests.

At the same time, they act aggressively to keep other males away. Dominant males have been observed to urinate more often and squirt larger quantities of urine in the water during fights compared to their subordinate rivals. The urine contains pheromones that reduce aggressive behavior in other males. The compounds also lure females to the nest and modify their hormonal status by accelerating oocyte maturation. Thus the pheromones help to synchronize female spawning and external fertilization by the males and so to increase the odds of reproductive success.

Tilapias also show this behavior in captivity, which makes them an ideal model system for reproducible biological assays. Tina Keller-Costa and her colleagues at the Marine Science Center at the University of the Algarve in Faro, Portugal, as well as the Biosynthesis/NMR Research Group at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now identified the chemical structure of the signaling molecules in tilapia males and studied their function. She collected urine samples from dominant males and purified the samples in several steps, testing them for biological activity as pheromones after each step.

Two steroids as main components in the urine

This procedure resulted in two pure substances whose chemical structures were elucidated using nuclear magnetic resonance spectroscopy (NMR). Their identity was confirmed by chemical synthesis: “The two structures are stereoisomers or mirror images of a pregnane-type steroid linked to glucuronic acid,” Bernd Schneider, the head of the NMR lab in Jena, said, summarizing the results of the analysis.

Both males and females showed highly sensitive responses to the odor of these two steroids. Although the two pheromone components stimulate the hormonal system of the females and trigger spawning, they are not by themselves capable of reducing aggressive behavior in rival males. The researchers thus assume that the urine of dominant males must contain additional yet-to-be identified substances that contribute to this effect in a complex mixture.

Until now only very few fish pheromones have been chemically identified. “Our discovery will allow for further investigations, for example, of the mechanisms of perception and processing of these chemical signals by the brain in order to originate a response, in this case oocyte maturation and behavioral changes,” says Tina Keller-Costa, who conducted the experiments for her PhD thesis.

Ways to control invasive fish species and benefits for the aquaculture of food fish

Apart from the carp family, tilapias belong to the most important edible fish raised commercially. However, their aquaculture in many tropical and subtropical waters has led to an uncontrolled population growth and spread of the species. The use of pheromones could help optimize the aquaculture of tilapia species by increasing female fertility and reducing aggression between competing males. Pheromones could also help to control the invasive behavior of these fish, which threatens the ecological balance of many ecosystems.

Contact 

Dr. Bernd Schneider

Max Planck Institute for Chemical Ecology, Jena

Phone: +49 3641 57-1600

 

Angela Overmeyer

Press and Public Relations

Max Planck Institute for Chemical Ecology, Jena

Phone: +49 3641 57-2110

 

Original publication

 
Keller-Costa, T., Hubbard, P.C., Paetz, C., Nakamura, Y., da Silva, J. P., Rato, A., Barata, E. N., Schneider, B., Canario, A. V. M.
Identity of a tilapia pheromone released by dominant males that primes females for reproduction.
Current Biology, DOI: 10.1016/j.cub.2014. 07.049

Dr. Bernd Schneider | Max-Planck-Institut

Further reports about: Chemical Ecology aquaculture females invasive pheromones publication species steroids tilapia urine

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>