Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tick tock: Rods help set internal clocks, biologist says

20.09.2010
We run our modern lives largely by the clock, from the alarms that startle us out of our slumbers and herald each new workday to the watches and clocks that remind us when it's time for meals, after-school pick-up and the like.

In addition to those ubiquitous timekeepers, though, we have internal "clocks" that are part of our biological machinery and which help set our circadian rhythms, regulating everything from our sleep-wake cycles to our appetites and hormone levels. Light coming into our brains via our eyes set those clocks, though no one is sure exactly how this happens.

But a Johns Hopkins biologist – working in collaboration with scientists at the University of Southern California and Cornell University -- unlocked part of that mystery recently. Their study found that rod cells – one of three kinds of exquisitely photosensitive cells found in the retina of the eye – are the only ones responsible for "setting" those clocks in low light conditions. What's more, the study found that rods – which take their name from their cylindrical shape – also contribute (along with cones and other retinal cells) to setting internal clocks in bright light conditions. The study appeared in a recent issue of Nature Neuroscience.

These findings are surprising for several reasons, according to study leader Samer Hattar of the Department of Biology at the Krieger School of Arts and Sciences.

"One is that it had previously been thought that circadian rhythms could only be set at relatively bright light intensities, and that didn't turn out to be the case," he explained. "And two, we knew going in that rods 'bleach,' or become ineffective, when exposed to very bright light, so it was thought that rods couldn't be involved in setting our clocks at all in intense light. But they are."

In the study, Hattar's team used a group of mice which were genetically modified to have only rod photoreceptors, meaning their cones and intrinsically photosensitive retinal ganglion cells -- both of them light-sensitive cells in the animals' retinas -- were not functional. The team then exposed the rodents to varying intensities of light, measuring the animals' responding level of activity by how often they ran on hamster wheels.

The study results are important because they indicate that prolonged exposure to dim or low light at night (such as that in homes and office buildings) can influence mammals' biological clocks and "throw off" their sleep-wake cycles. Hattar suggested that one way people can mitigate this effect is to make sure to get some exposure to bright day light every day. (The exposure to brighter, natural daylight will firmly reset the clocks to a proper asleep-at-night-awake-in-the-day cycle.)

In addition, the study has possible implications for older people being cared for in nursing homes and hospitals, he said.

"Older adults often lose their rod cells to age, which means that their caretakers would be well advised to regularly and deliberately expose them to bright natural daylight in order to make sure that their natural, biological rhythms remain in sync so their sleep-wake cycles remain accurately set," Hattar said. "Otherwise, they could have sleep disturbances, such as intermittent waking or difficulty falling asleep, not to mention the impact on their appetite and other bodily functions."

Hattar's study was funded by the National Institute of General Medical Sciences.

Copies of the study are available. Contact Lisa De Nike at Lde@jhu.edu or 443-287-9960.

Hattar's webpage: http://www.bio.jhu.edu/Faculty/Hattar/Default.html

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>