Tick-borne encephalitis virus reveals its access code

Flaviviruses such as tick-borne encephalitis virus (TBEV), yellow fever, and dengue are dangerous human pathogens. These membrane-encircled viruses enter cells by being gobbled up into endosomes and fusing their membrane with that of the endosome.

Fusion is triggered by the endosome's acidic environment. Low pH prompts the aptly named fusion protein, on the virus's outer membrane, to change shape and grab hold of the endosome membrane, bringing the two membranes together. In their search for possible pH sensors, researchers have focused on five highly conserved histidine residues in the flavivirus fusion protein. The chemical properties of histidines make them prime candidates—they switch from uncharged to having a double positive charge upon acidification of their environment, such as that in endosomes.

Fritz et al. replaced each of the five histidines of the TBEV fusion protein with alternative residues and observed the virus's fusion ability. Given the conservation of the five histidines, the team was surprised, that mutation of one of the histidines, His323, was sufficient to completely abolish fusion. Individual mutation of three of the others had no effect on fusion whatsoever, and mutation of the fourth led to an untestable ill-formed fusion protein.

The team went on to show that mutation of the crucial His323 interfered with the pH-induced shape change of the fusion protein.

Fritz, R., et al. 2008. J. Cell Biol. doi:10.1083/jcb.200806081

Media Contact

Sati Motieram EurekAlert!

More Information:

http://www.rockefeller.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors