Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tick-borne disease discovered in Gothenburg

06.12.2011
Researchers at the University of Gothenburg’s Sahlgrenska Academy have discovered a brand new tick-borne infection. Since the discovery, eight cases have been described around the world, three of them in the Gothenburg area, Sweden.

In July 2009 a 77-year-old man from western Sweden was out kayaking when he went down with acute diarrhea, fever and temporary loss of consciousness. He was taken to hospital where it was found that he was also suffering with deep vein thrombosis (DVT). Following treatment with antibiotics, he was discharged some days later with an anticoagulant to thin his blood. However, the man – who had an impaired immune system – went down with a fever again.

Brand new infection

Over the following months the 77-year-old was admitted as an emergency case on several occasions, but despite repeated attempts to find a microbe, and repeated doses of antibiotics, the fever returned. Finally the patient’s blood underwent special analysis to look for bacterial DNA – and that produced results. The findings matched a bacterium in an online gene bank and the results were a sensation: the man had contracted a brand new infection in humans which had never been described in the world before.

Never before seen in Sweden

The man’s blood contained DNA that derived with 100% certainty from the bacterium Neoehrlichia mikurensis. This bacterium was identified for the first time in Japan in 2004 in rats and ticks but had never before been seen in Sweden in ticks, rodents or humans.

Research published

Christine Wennerås, a doctor and researcher at the Department of Infectious Diseases and the Department of Haematology and Coagulation at the University of Gothenburg’s Sahlgrenska Academy, has been studying the case since it first came to light. Last year she was able, for the first time, to describe the newly discovered disease in a scientific article published in the Journal of Clinical Microbiology.

“Since our discovery the bacterium has been reported in eight cases around the world, three of them in Gothenburg,” says Wennerås.

Causes DVT

All three of the Gothenburg cases involved patients with an impaired immune system, all of whom became ill during the summer months when ticks are most active.

“The nasty thing about this infection is that it causes DVT, at least in people with an impaired immune system,” says Wennerås. “This can be life-threatening. Fortunately, the infection can be treated successfully with antibiotics.

Spreads from mammals

“If the newly discovered bacterium is similar to those we already know, it has presumably spread from wild mammals to people via ticks, and it is unlikely that it can be passed on from person to person.”

The mikurensis in the bacterium’s name comes from the Japanese island of Mikura, where it was first discovered.

Bibliographic data
Journal: J Clin Microbiol. 2010 May; 48(5): 1956–1959.
Published online 2010 March 10. doi: 10.1128/JCM.02423-09
Title: First Case of Human “Candidatus Neoehrlichia mikurensis” Infection in a Febrile Patient with Chronic Lymphocytic Leukemia

Author: Christina Welinder-Olsson, Eva Kjellin, Krista Vaht, Stefan Jacobsson and Christine Wennerås

For more information, please contact: Christine Wennerås, Sahlgrenska Academy, University of Gothenburg
Mobile: +46 (0)708 656 167
Telephone: +46 (0)31 342 4784
E-mail: christine.wenneras@microbio.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863919/?tool=pubmed

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>