Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tick-borne disease discovered in Gothenburg

06.12.2011
Researchers at the University of Gothenburg’s Sahlgrenska Academy have discovered a brand new tick-borne infection. Since the discovery, eight cases have been described around the world, three of them in the Gothenburg area, Sweden.

In July 2009 a 77-year-old man from western Sweden was out kayaking when he went down with acute diarrhea, fever and temporary loss of consciousness. He was taken to hospital where it was found that he was also suffering with deep vein thrombosis (DVT). Following treatment with antibiotics, he was discharged some days later with an anticoagulant to thin his blood. However, the man – who had an impaired immune system – went down with a fever again.

Brand new infection

Over the following months the 77-year-old was admitted as an emergency case on several occasions, but despite repeated attempts to find a microbe, and repeated doses of antibiotics, the fever returned. Finally the patient’s blood underwent special analysis to look for bacterial DNA – and that produced results. The findings matched a bacterium in an online gene bank and the results were a sensation: the man had contracted a brand new infection in humans which had never been described in the world before.

Never before seen in Sweden

The man’s blood contained DNA that derived with 100% certainty from the bacterium Neoehrlichia mikurensis. This bacterium was identified for the first time in Japan in 2004 in rats and ticks but had never before been seen in Sweden in ticks, rodents or humans.

Research published

Christine Wennerås, a doctor and researcher at the Department of Infectious Diseases and the Department of Haematology and Coagulation at the University of Gothenburg’s Sahlgrenska Academy, has been studying the case since it first came to light. Last year she was able, for the first time, to describe the newly discovered disease in a scientific article published in the Journal of Clinical Microbiology.

“Since our discovery the bacterium has been reported in eight cases around the world, three of them in Gothenburg,” says Wennerås.

Causes DVT

All three of the Gothenburg cases involved patients with an impaired immune system, all of whom became ill during the summer months when ticks are most active.

“The nasty thing about this infection is that it causes DVT, at least in people with an impaired immune system,” says Wennerås. “This can be life-threatening. Fortunately, the infection can be treated successfully with antibiotics.

Spreads from mammals

“If the newly discovered bacterium is similar to those we already know, it has presumably spread from wild mammals to people via ticks, and it is unlikely that it can be passed on from person to person.”

The mikurensis in the bacterium’s name comes from the Japanese island of Mikura, where it was first discovered.

Bibliographic data
Journal: J Clin Microbiol. 2010 May; 48(5): 1956–1959.
Published online 2010 March 10. doi: 10.1128/JCM.02423-09
Title: First Case of Human “Candidatus Neoehrlichia mikurensis” Infection in a Febrile Patient with Chronic Lymphocytic Leukemia

Author: Christina Welinder-Olsson, Eva Kjellin, Krista Vaht, Stefan Jacobsson and Christine Wennerås

For more information, please contact: Christine Wennerås, Sahlgrenska Academy, University of Gothenburg
Mobile: +46 (0)708 656 167
Telephone: +46 (0)31 342 4784
E-mail: christine.wenneras@microbio.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863919/?tool=pubmed

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>