Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three parents and a baby - Scientists advise caution with regard to artificial insemination method

17.06.2014

The approval of a new treatment method by which three parents will be able to beget a child is being discussed since a few years in Great Britain and will possibly become a reality in two years.

The method is supposed to help in eliminating the mother's genetic defects already in the test tube. The defect lies in so-called mitochondria, the "power houses" of cells. To get rid of defective mitochondria the nucleus of one egg cell has to be transferred to another egg cell bearing intact mitochondria. Scientists at the Vetmeduni Vienna show for the first time that even a few defective mitochondria dragged along in the transfer could cause diseases.


Already a few dysfunctional mitochondria (in yellow on top of the picture) could cause a disease by overgrowing functional ones (in blue). Illustration: Iain Johnston

The results were published in Cell Reports.

Mitochondria are cell organelles located within animal and human cells. They produce energy for the organism, possess their own genetic material - mitochondrial DNA (mtDNA) - and are transmitted exclusively by the mother. Depending on their activity and tasks, different numbers of mitochondria are present in a cell - usually a few hundred to a thousand per body cell.

Inherited mitochondrial disorders or so-called mitochondropathies occur in about one of 10,000 humans throughout the world. Diseases such as diabetes, stroke, cardiac defects, epilepsy, or muscle weakness may originate from mitochondrial defects. Inherited mitochondrial disorders have been incurable so far. Therefore, efforts are now being made to enable women with this disease to bear healthy children by means of nuclear transfer.

Mitochondria multiply at different rates

Jörg Burgstaller, a scientist and member of Gottfried Brem's research group at the Vetmeduni Vienna, has been working for several years on the genetics of mitochondria. It was known before that different types of mitochondria within a cell can proliferate at different rates. However, it was not known whether this is a singular phenomenon or if these cases occur more frequently.

Burgstaller investigated this in four newly bred mouse models which carried different mixtures of mitochondria whose DNA were related to each other to a differing extent. This meant no health problem for the mice since all mtDNAs are were fully functional.

The outcome was: the more distantly two types of mitochondria within an egg cell were related, the more frequently a growth advantage was noted in favor of one of the two types of mitochondria. When two different mtDNAs were equally common in cells of an organ at the time of birth, one type was completely lost after a while. One mitochondria variant had thus achieved a growth advantage compared to the other variant and superseded the latter. This effect was almost non-existent in genetically very similar mitochondria within the cells; the ratio between the two types of mitochondria was not altered in that case.

The effect is of significance in reproduction medicine

Burgstaller's results may have effects on the planned introduction of the so called "Three-Parent Baby" in Great Britain. Experts take the cell nucleus of one human egg cell whose mitochondria have a defect and place it in an egg cell with "healthy" mitochondria. The baby resulting from this procedure has three parents, namely the mother whose cell nucleus is used, the mother whose mitochondria are involved, and the father whose sperm inseminated the egg cell.

However, this method raises the following problem: in every nuclear transfer, a small number of defective mitochondria are transferred into the healthy egg cell. "So far it was believed that this minimal ‘contamination’ is of no consequence for the baby. However, our data show that the effect may have dramatic consequences on the health of the offspring. If the mitochondria of both mothers are genetically very different, it may have the same effects seen in the mouse model," says Burgstaller who developed the theory together with co-author Joanna Poulton, Professor of Mitochondrial Genetics at the John Radcliffe Hospital in Oxford. "One mitochondrial type may be able to assert itself against the other. If the assertive one happens to carry the defective mtDNA, the benefit of the therapy would be jeopardized."

The solution to the "Three-Parent Baby"-problem

Burgstaller and his colleagues suggest the following solution to the problem: the mtDNA of both mothers, i.e. the donor of the nucleus and the donor of the mitochondria, should be analyzed in advance and aligned to each other. So called “machting haplotypes” could prevent the dangerous effect. In the future the effect may even be utilized in a targeted manner to suppress defective mtDNA.

The work was conducted in cooperation with BIAT (Biomodels Austria) and the technology platform Vetcore at Vetmeduni Vienna, Joanna Poulton from John Radcliffe Hospital in Oxford, Jaroslav Piálek from the Czech Academy of Sciences, and Iain Johnston and Nick Jones from the Imperial College (London).

The article „mtDNA Segregation in Heteroplasmic Tissues Is Common In Vivo and Modulated by Haplotype Differences and Developmental Stage”, by Joerg Patrick Burgstaller, Iain G. Johnston, Nick S. Jones, Jana Albrechtová, Thomas Kolbe, Claus Vogl, Andreas Futschik, Corina Mayrhofer, Dieter Klein, Sonja Sabitzer, Mirjam Blattner, Christian Gülly, Joanna Poulton, Thomas Rülicke, Jaroslav Piálek, Ralf Steinborn and Gottfried Brem was published in the journal Cell Reports. DOI: 10.1016/j.celrep.2014.05.020 http://www.sciencedirect.com/science/article/pii/S2211124714003957

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Joerg Burgstaller
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-5639
M +43 664 3767262
joerg.burgstaller@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Medicine Poulton Veterinary artificial mitochondria mitochondrial mtDNA

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>