Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Three gene networks discovered in autism, may present treatment targets


CHOP research points to brain's glutamate signaling in autism, ADHD, schizophrenia

A large new analysis of DNA from thousands of patients has uncovered several underlying gene networks with potentially important roles in autism. These networks may offer attractive targets for developing new autism drugs or repurposing existing drugs that act on components of the networks.

Furthermore, one of the autism-related gene pathways also affects some patients with attention-deficit hyperactivity disorder (ADHD) and schizophrenia—raising the possibility that a class of drugs may treat particular subsets of all three neurological disorders.

"Neurodevelopmental disorders are extremely heterogeneous, both clinically and genetically," said study leader Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia (CHOP). "However, the common biological patterns we are finding across disease categories strongly imply that focusing on underlying molecular defects may bring us closer to devising therapies."

... more about:
»ADHD »ASDs »Autism »CNVs »defects »drugs »genes »glutamate »networks »pathway »variants

The study by Hakonarson and colleagues, appearing online today in Nature Communications, draws on gene data from CHOP's genome center as well as from the Autism Genome Project and the AGRE Consortium, both part of the organization Autism Speaks.

Autism spectrum disorders (ASDs), of which autism is the best known, are a large group of heritable childhood neuropsychiatric conditions characterized by impaired social interaction and communication, as well as by restricted behaviors. The authors note that recent investigations suggest that up to 400 distinct ASDs exist.

The current research is a genome-wide association study comparing more than 6,700 patients with ASDs to over 12,500 control subjects. It was one of the largest-ever studies of copy number variations (CNVs) in autism. CNVs are deletions or duplications of DNA sequences, as distinct from single-base changes in DNA.

The study team focused on CNVs within defective gene family interaction networks (GFINs)—groups of disrupted genes acting on biological pathways. In patients with autism, the team found three GFINs in which gene variants perturb how genes interact with proteins. Of special interest to the study group was the metabotropic glutamate receptor (mGluR) signaling pathway, defined by the GRM family of genes that affects the neurotransmitter glutamate, a major chemical messenger in the brain regulating functions such as memory, learning, cognition, attention and behavior.

Hakonarson's team and other investigators previously reported that 10 percent or more of ADHD patients have CNVs in genes along the glutamate receptor metabotropic (GRM) pathway, while other teams have implicated GRM gene defects in schizophrenia.

Based on these findings, Hakonarson is planning a clinical trial in selected ADHD patients of a drug that activates the GRM pathway. "If drugs affecting this pathway prove successful in this subset of patients with ADHD, we may then test these drugs in autism patients with similar gene variants," he said.

In ASDs and other complex neurodevelopmental disorders, common gene variants often have very small individual effects, while very rare gene variants exert stronger effects. Many of these genes with very rare defects belong to gene families that may offer druggable targets.

The three gene families found in the current study have notable functional roles. The CALM1 network includes the calmodulin family of proteins, which regulate cell signaling and neurotransmitter function. The MXD-MYC-MAX gene network is involved in cancer development, and may underlie links reported between autism and specific types of cancer. Finally, members of the GRM gene family affect nerve transmission, neuron formation, and interconnections in the brain—processes highly relevant to ASDs.

The functional activities identified in the current study are consistent with a recent multicenter study in which Hakonarson participated, published May 1 in the American Journal of Human Genetics. That study, led by scientists from Paris and Toronto, and using Autism Genome Project data, found hundreds of rare ASD-related gene variants converging on gene networks involved in neuronal signaling, synapse function and chromatin regulation (a biological process affecting gene expression). Many of the genes in these networks have been implicated in other developmental disorders besides autism.

"Even though our own study was large, it captures only about 20 percent of genes causing ASDs," said Hakonarson, who added that still larger studies are needed to further unravel the genetic landscape of autism. "However, strong animal data support an important role for the glutamate receptor pathway in socially impaired behaviors modeling ASDs. Because the GRM pathway seems to be a major driver in three diseases-- autism, ADHD and schizophrenia--there is a compelling rationale for investigating treatment strategies focused on this pathway."


The AGRE Consortium, a program of Autism Speaks, provided resources and data for this study. AGRE is supported in part by the National Institutes of Health (including grant MH081810).

"The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism," Nature Communications, published online June 6, 2014.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 535-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit

John Ascenzi | Eurek Alert!

Further reports about: ADHD ASDs Autism CNVs defects drugs genes glutamate networks pathway variants

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>