Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three gene networks discovered in autism, may present treatment targets

06.06.2014

CHOP research points to brain's glutamate signaling in autism, ADHD, schizophrenia

A large new analysis of DNA from thousands of patients has uncovered several underlying gene networks with potentially important roles in autism. These networks may offer attractive targets for developing new autism drugs or repurposing existing drugs that act on components of the networks.

Furthermore, one of the autism-related gene pathways also affects some patients with attention-deficit hyperactivity disorder (ADHD) and schizophrenia—raising the possibility that a class of drugs may treat particular subsets of all three neurological disorders.

"Neurodevelopmental disorders are extremely heterogeneous, both clinically and genetically," said study leader Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia (CHOP). "However, the common biological patterns we are finding across disease categories strongly imply that focusing on underlying molecular defects may bring us closer to devising therapies."

... more about:
»ADHD »ASDs »Autism »CNVs »defects »drugs »genes »glutamate »networks »pathway »variants

The study by Hakonarson and colleagues, appearing online today in Nature Communications, draws on gene data from CHOP's genome center as well as from the Autism Genome Project and the AGRE Consortium, both part of the organization Autism Speaks.

Autism spectrum disorders (ASDs), of which autism is the best known, are a large group of heritable childhood neuropsychiatric conditions characterized by impaired social interaction and communication, as well as by restricted behaviors. The authors note that recent investigations suggest that up to 400 distinct ASDs exist.

The current research is a genome-wide association study comparing more than 6,700 patients with ASDs to over 12,500 control subjects. It was one of the largest-ever studies of copy number variations (CNVs) in autism. CNVs are deletions or duplications of DNA sequences, as distinct from single-base changes in DNA.

The study team focused on CNVs within defective gene family interaction networks (GFINs)—groups of disrupted genes acting on biological pathways. In patients with autism, the team found three GFINs in which gene variants perturb how genes interact with proteins. Of special interest to the study group was the metabotropic glutamate receptor (mGluR) signaling pathway, defined by the GRM family of genes that affects the neurotransmitter glutamate, a major chemical messenger in the brain regulating functions such as memory, learning, cognition, attention and behavior.

Hakonarson's team and other investigators previously reported that 10 percent or more of ADHD patients have CNVs in genes along the glutamate receptor metabotropic (GRM) pathway, while other teams have implicated GRM gene defects in schizophrenia.

Based on these findings, Hakonarson is planning a clinical trial in selected ADHD patients of a drug that activates the GRM pathway. "If drugs affecting this pathway prove successful in this subset of patients with ADHD, we may then test these drugs in autism patients with similar gene variants," he said.

In ASDs and other complex neurodevelopmental disorders, common gene variants often have very small individual effects, while very rare gene variants exert stronger effects. Many of these genes with very rare defects belong to gene families that may offer druggable targets.

The three gene families found in the current study have notable functional roles. The CALM1 network includes the calmodulin family of proteins, which regulate cell signaling and neurotransmitter function. The MXD-MYC-MAX gene network is involved in cancer development, and may underlie links reported between autism and specific types of cancer. Finally, members of the GRM gene family affect nerve transmission, neuron formation, and interconnections in the brain—processes highly relevant to ASDs.

The functional activities identified in the current study are consistent with a recent multicenter study in which Hakonarson participated, published May 1 in the American Journal of Human Genetics. That study, led by scientists from Paris and Toronto, and using Autism Genome Project data, found hundreds of rare ASD-related gene variants converging on gene networks involved in neuronal signaling, synapse function and chromatin regulation (a biological process affecting gene expression). Many of the genes in these networks have been implicated in other developmental disorders besides autism.

"Even though our own study was large, it captures only about 20 percent of genes causing ASDs," said Hakonarson, who added that still larger studies are needed to further unravel the genetic landscape of autism. "However, strong animal data support an important role for the glutamate receptor pathway in socially impaired behaviors modeling ASDs. Because the GRM pathway seems to be a major driver in three diseases-- autism, ADHD and schizophrenia--there is a compelling rationale for investigating treatment strategies focused on this pathway."

###

The AGRE Consortium, a program of Autism Speaks, provided resources and data for this study. AGRE is supported in part by the National Institutes of Health (including grant MH081810).

"The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism," Nature Communications, published online June 6, 2014. http://doi.org/10.1038/ncomms5074

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 535-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

John Ascenzi | Eurek Alert!

Further reports about: ADHD ASDs Autism CNVs defects drugs genes glutamate networks pathway variants

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>