Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Threaded through a Pore - Single-molecule detection of hydroxymethylcytosine in DNA

24.04.2013
Changes in the bases that make up DNA act as markers, telling a cell which genes it should read and which it shouldn’t.

In the journal Angewandte Chemie, a British team has now introduced a new method that makes it possible to enrich the rare gene segments that contain the modified base hydroxymethylcytosine and to identify individual hydroxymethylcytosine molecules in DNA. Such modifications are associated with autoimmune diseases and cancer.



The bases adenine, guanine, cytosine, and thymine make up the genetic code. Every cell of the body contains an identical set of complete genetic material. However, the various tissues in the body are very different from each other.

This is because the cells have the ability to transcribe only a specific selection of genes into proteins, leaving other genes unused. Epigenetic factors such as “markers” on the DNA control this process.

The base cytosine can be equipped with different side groups, such as a methyl or hydroxymethyl group. Dense methylation of regulatory gene segments switches off the corresponding genes. During development of the embryo, methylation patterns initiate cell differentiation.

Changes in the methylation patterns are associated with autoimmune diseases and cancer. Hydroxymethylcytosine patterns also seem to play a role in the differentiation of embryonic stem cells as well as in gene expression in cells of the central nervous system.

Sequencing techniques that can be used to specifically detect epigenetic bases are thus very important. To date, the identification of hydroxymethylcytosine has required complex, expensive, or error-prone processes. A team led by Hagan Bayley at the University of Oxford University has now developed a chemical modification that allows for the differentiation of hydroxymethylcytosine and methylcytosine through sequencing in nanopores.

Developed by Oxford Nanopore, a company formed by Hagan Bayley in 2005, the nanopore method is a highly promising alternative to the sequencing of individual DNA molecules without an amplification step. Fed by an enzyme, a single strand of DNA threads through a membrane-embedded protein pore.

Depending on which of the bases is in the narrowest part of the pore at a given time, there is a characteristic change in the flow of current through the pore.

A chemical reaction between hydroxymethylcytosine, bisulfite, and a cysteine-containing peptide that leaves the other bases—including methylcytosine—unchanged, greatly improves the resolution as the various bases result in differences in current.

Importantly, it is possible to attach a fluorescent marker to the modified site, or a molecular “eye” that can be used to attach the rare hydroxymethylcytosine-containing DNA fragments to “hooks” that allow the fragments to be enriched over unmodified fragments, enabling rapid sequence analysis.

About the Author
Hagan Bayley is the Professor of Chemical Biology at the University of Oxford, and the founder of Oxford Nanopore Technologies. He was recognized by the RSC as Chemistry World Entrepreneur of the Year in 2009 and was the society's Interdisciplinary Prize winner in 2012. He is a Fellow of the Royal Society.

Author: Hagan Bayley, University of Oxford (UK), http://bayley.chem.ox.ac.uk/hbayley/

Title: Single-Molecule Detection of 5-Hydroxymethylcytosine in DNA through Chemical Modification and Nanopore Analysis

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201300413

Hagan Bayley | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://bayley.chem.ox.ac.uk/hbayley/

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>