Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This is your brain on sentences

15.08.2016

Researchers at the University of Rochester have, for the first time, decoded and predicted the brain activity patterns of word meanings within sentences, and successfully predicted what the brain patterns would be for new sentences.

The study used functional magnetic resonance imaging (fMRI) to measure human brain activation. "Using fMRI data, we wanted to know if given a whole sentence, can we filter out what the brain's representation of a word is--that is to say, can we break the sentence apart into its word components, then take the components and predict what they would look like in a new sentence," said Andrew Anderson, a research fellow who led the study as a member of the lab of Rajeev Raizada, assistant professor of brain and cognitive sciences at Rochester.


These brain maps show how accurately it was possible to predict neural activation patterns for new, previously unseen sentences, in different regions of the brain. The brighter the area, the higher the accuracy. The most accurate area, which can be seen as the bright yellow strip, is a region in the left side of the brain known as the Superior Temporal Sulcus. This region achieved statistically significant sentence predictions in 11 out of the 14 people whose brains were scanned. Although that was the most accurate region, several other regions, broadly distributed across the brain, also produced significantly accurate sentence predictions.

Credit: Andrew Anderson/University of Rochester

"We found that we can predict brain activity patterns--not perfectly [on average 70% correct], but significantly better than chance," said Anderson, The study is published in the journal Cerebral Cortex.

Anderson and his colleagues say the study makes key advances toward understanding how information is represented throughout the brain. "First, we introduced a method for predicting the neural patterns of words within sentences--which is more complex than previous studies, which have almost all focused on single words," Anderson said. "And second, we devised a novel approach to map semantic characteristics of words that we then correlated to neural activity patterns."

Finding a word in a sentence

To predict the patterns of particular words within sentences, the researchers used a broad set of sentences, with many words shared between them. For example: "The green car crossed the bridge," "The magazine was in the car," and "The accident damaged the yellow car." fMRI data was collected from 14 participants as they silently read 240 sentences.

"We estimate the representation of a word 'car,' in this case, by taking the neural brain activity pattern associated with all of the sentences which that word occurred in and we decomposed sentence level brain activity patterns to build an estimate of the representation of the word," explained Anderson.

What does the meaning of a word look like?

"Coffee has a color, smell, you can drink it--coffee makes you feel good--it has sensory, emotional, and social aspects," said senior author Raizada. "So we built upon a model created by Jeffrey Binder at the Medical College of Wisconsin, a coauthor on the paper, and surveyed people to tell us about the about the sensory, emotional, social and other aspects for a set of words. Together, we then took that approach in a new direction, by going beyond individual words to entire sentences."

The new semantic model employs 65 attributes--such as "color," "pleasant," "loud," and "time." Participants in the survey rated, on a scale of 0-6, the degree to which a given root concept was associate with a particular experience. For example, "To what degree do you think of 'coffee' as having a characteristic or defining temperature?" In total, 242 unique words were rated with each of the 65 attributes.

"The strength of association of each word and its attributes allowed us to estimate how its meanings would be represented across the brain using fMRI," said Raizada.

The model captures a wider breadth of experience than previous semantic models, said Anderson, "which made it easier to interpret the relationship between the predictive model and brain activity patterns."

The team was then able to recombine activity patterns for individual words, in order to predict brain patterns for entire sentences built up out of new combinations of those words. For example, the computer model could predict the brain pattern for a sentence such as, "The family played at the beach," even though it had never seen that specific sentence before. Instead, it had only seen other sentences containing those words in different contexts, such as "The beach was empty" and "The young girl played soccer."

The researchers said the study opens a new set of questions toward understanding how meaning is represented in the brain. "Not now, not next year, but this kind of research may eventually help individuals who have problems with producing language, including those who suffer from traumatic brain injuries or stroke," said Anderson.

###

The Intelligence Advanced Research Projects Activity and the National Science Foundation supported the research.

Media Contact

Monique Patenaude
monique.patenaude@rochester.ed
585-355-7906

 @UofR

http://www.rochester.edu 

Monique Patenaude | EurekAlert!

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>