Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No such thing as 'junk RNA'

14.10.2009
Tiny strands of RNA previously dismissed as cellular junk are actually very stable molecules that may play significant roles in cellular processes, according to researchers at the University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute (UPCI).

The findings, published last week in the online version of the Journal of Virology, represent the first examination of very small RNA products termed unusually small RNAs (usRNAs). Further study of these usRNAs, which are present in the thousands but until now have been neglected, could lead to new types of biomarkers for diagnosis and prognosis, and new therapeutic targets.

In recent years, scientists have recognized the importance of small RNAs that generally contain more than 20 molecular units called nucleotides, said senior author Bino John, Ph.D., assistant professor, Department of Computational Biology, Pitt School of Medicine.

"But until we did our experiments, we didn't realize that RNAs as small as 15 nucleotides, which we thought were simply cell waste, are surprisingly stable, and are repeatedly, reproducibly, and accurately produced across different tissue types." Dr. John said. "We have dubbed these as usRNAs, and we have identified thousands of them, present in a diversity that far exceeds all other longer RNAs found in our study."

The team's experiments began with the observation that the Kaposi sarcoma-associated herpesvirus produces a usRNA that can control the production of a human protein. Detailed studies using both computational and experimental tools revealed a surprisingly large world of approximately 15 nucleotide-long usRNAs with intriguing characteristics. Many usRNAs interact with proteins already known to be involved in small RNA regulatory pathways. Some also share highly specific nucleotide patterns at one end. The researchers wrote that the existence of several different patterns in usRNAs reflects the diverse pathways in which the RNAs participate.

"These findings suggest that usRNAs are involved in biological processes, and we should investigate them further," Dr. John noted. "They may be valuable tools to diagnose diseases, or perhaps they could present new drug targets."

In addition to exploring biomarker potential, he and his colleagues plan to better characterize the various subclasses of usRNAs, identify their protein partners and study how they are made in the cell.

Co-authors of the paper include Zhihua Li, Ph.D., Sang Woo Kim, Ph.D., Yuefeng Lin, of the Department of Computational Biology; Patrick S. Moore, M.D., M.P.H, Department of Microbiology and Molecular Genetics and the Molecular Virology Program, UPCI; and Yuan Chang, M.D., Molecular Virology Program, UPCI.

This research was supported by grants from the National Institute of General Medicine Sciences and the National Cancer Institute, the American Cancer Society, the Pennsylvania Department of Health and the University of Pittsburgh.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>