Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite their thick skins, alligators and crocodiles are surprisingly touchy

08.11.2012
Crocodiles and alligators are notorious for their thick skin and well-armored bodies. So it comes as something of a surprise to learn that their sense of touch is one of the most acute in the animal kingdom.

The crocodilian sense of touch is concentrated in a series of small, pigmented domes that dot their skin all over their body. In alligators, the spots are concentrated around their face and jaws.


This is a small alligator floating with just its eyes above the water.

Credit: Mike Todd, Vanderbilt University

A new study, published in the Nov. 8 issue of the Journal of Experimental Biology, has discovered that these spots contain a concentrated collection of touch sensors that make them even more sensitive to pressure and vibration than human fingertips.

"We didn't expect these spots to be so sensitive because the animals are so heavily armored," said Duncan Leitch, the graduate student who performed the studies under the supervision of Ken Catania, Stevenson Professor of Biological Sciences at Vanderbilt.

Scientists who have studied crocodiles and alligators have taken note of these spots, which they have labeled "integumentary sensor organs" or ISOs.

Over the years they have advanced a variety of different hypotheses about their possible function. These include: source of oily secretions that keep the animals clean; detection of electric fields; detection of magnetic fields; detection of water salinity; and, detection of pressure and vibrations.

In 2002, a biologist at the University of Maryland reported that alligators in a darkened aquarium turned to face the location of single droplets of water even when their hearing was disrupted by white noise. She concluded that the sensor spots on their faces allowed them to detect the tiny ripples that the droplets produced.

"This intriguing finding inspired us to look further," Catania said. "For a variety of reasons, including the way that the spots are distributed around their body, we thought that the ISOs might be more than water ripple sensors."

As a result, Leitch began a detailed investigation of the ISOs and their neural connections in both American alligators and Nile crocodiles.

Leitch found that these sensory spots are connected to the brain through the trigeminal ganglia, the nerve bundle that provides sensation to the face and jaw in humans.

In addition, his studies ruled out most of the alternative hypothesis for the ISOs function. For example, his anatomical studies didn't find pores that could release cleansing oil. Similarly, he found that the nerves in the ISOs didn't react to electric fields or, when submerged in water, to changes in salinity.

"I didn't test for sensitivity to magnetic fields, but we don't think this is likely either," said Leitch. In animals that can detect magnetic fields, he explained, the sensors are located inside the body, not on the surface.

What he did find is a diverse collection of "mechanoreceptors:" nerves that respond to pressure and vibration. Some are specially tuned to vibrations in the 20-35 Hertz range, just right for detecting tiny water ripples. Others respond to levels of pressure that are too faint for the human fingertip to detect.

Their analysis led the scientists to conclude that the crocodilian's touch system is exceptional, allowing them to not only detect water movements created by swimming prey, but also to determine the location of prey through direct contact for a rapid and direct strike and to discriminate and manipulate objects in their jaws.

Their finding that the most heavily wired ISOs are located in the mouth near the teeth suggests that the touch sensors help the animals identify the objects that they catch in their jaws. The sensors also appear to provide the sensitivity that female alligators and crocodiles need to delicately break open their eggs when they are ready to hatch and to protect their hatchlings by carrying them in their jaws, the same jaws that can clamp down on prey with a force of more than 2,000 psi.

This research was supported by National Science Foundation grant #0844743 and by a Vanderbilt University Discover Grant.

David F Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

Further reports about: ISOs Vanderbilt Vibration electric field magnetic field magnetic fields

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>