Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite their thick skins, alligators and crocodiles are surprisingly touchy

08.11.2012
Crocodiles and alligators are notorious for their thick skin and well-armored bodies. So it comes as something of a surprise to learn that their sense of touch is one of the most acute in the animal kingdom.

The crocodilian sense of touch is concentrated in a series of small, pigmented domes that dot their skin all over their body. In alligators, the spots are concentrated around their face and jaws.


This is a small alligator floating with just its eyes above the water.

Credit: Mike Todd, Vanderbilt University

A new study, published in the Nov. 8 issue of the Journal of Experimental Biology, has discovered that these spots contain a concentrated collection of touch sensors that make them even more sensitive to pressure and vibration than human fingertips.

"We didn't expect these spots to be so sensitive because the animals are so heavily armored," said Duncan Leitch, the graduate student who performed the studies under the supervision of Ken Catania, Stevenson Professor of Biological Sciences at Vanderbilt.

Scientists who have studied crocodiles and alligators have taken note of these spots, which they have labeled "integumentary sensor organs" or ISOs.

Over the years they have advanced a variety of different hypotheses about their possible function. These include: source of oily secretions that keep the animals clean; detection of electric fields; detection of magnetic fields; detection of water salinity; and, detection of pressure and vibrations.

In 2002, a biologist at the University of Maryland reported that alligators in a darkened aquarium turned to face the location of single droplets of water even when their hearing was disrupted by white noise. She concluded that the sensor spots on their faces allowed them to detect the tiny ripples that the droplets produced.

"This intriguing finding inspired us to look further," Catania said. "For a variety of reasons, including the way that the spots are distributed around their body, we thought that the ISOs might be more than water ripple sensors."

As a result, Leitch began a detailed investigation of the ISOs and their neural connections in both American alligators and Nile crocodiles.

Leitch found that these sensory spots are connected to the brain through the trigeminal ganglia, the nerve bundle that provides sensation to the face and jaw in humans.

In addition, his studies ruled out most of the alternative hypothesis for the ISOs function. For example, his anatomical studies didn't find pores that could release cleansing oil. Similarly, he found that the nerves in the ISOs didn't react to electric fields or, when submerged in water, to changes in salinity.

"I didn't test for sensitivity to magnetic fields, but we don't think this is likely either," said Leitch. In animals that can detect magnetic fields, he explained, the sensors are located inside the body, not on the surface.

What he did find is a diverse collection of "mechanoreceptors:" nerves that respond to pressure and vibration. Some are specially tuned to vibrations in the 20-35 Hertz range, just right for detecting tiny water ripples. Others respond to levels of pressure that are too faint for the human fingertip to detect.

Their analysis led the scientists to conclude that the crocodilian's touch system is exceptional, allowing them to not only detect water movements created by swimming prey, but also to determine the location of prey through direct contact for a rapid and direct strike and to discriminate and manipulate objects in their jaws.

Their finding that the most heavily wired ISOs are located in the mouth near the teeth suggests that the touch sensors help the animals identify the objects that they catch in their jaws. The sensors also appear to provide the sensitivity that female alligators and crocodiles need to delicately break open their eggs when they are ready to hatch and to protect their hatchlings by carrying them in their jaws, the same jaws that can clamp down on prey with a force of more than 2,000 psi.

This research was supported by National Science Foundation grant #0844743 and by a Vanderbilt University Discover Grant.

David F Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

Further reports about: ISOs Vanderbilt Vibration electric field magnetic field magnetic fields

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>