Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thesis: How the plant cell synthesizes the pharmaceutical compounds?

05.11.2008
VTT’s Research Scientist Suvi Häkkinen (MSc, Tech) has studied in her thesis alkaloid biosynthesis and metabolism in two Solanaceae plants, tobacco and Egyptian henbane.
The studies bring new information about the functions of genes involved with the biosynthesis of plant secondary metabolites. The results can be used in developing production of valuable pharmaceuticals in plant cell cultures.

Plants produce small-molecular-weight compounds, which are used for example to attract pollinators and in various defence-related reactions. These secondary metabolites are often produced in low quantities in plants. Moreover, they are often structurally very complex molecules, and therefore their chemical synthesis is challenging.
Alkaloids, such as morphine and paclitaxel, are secondary compounds which are used as pharmaceuticals. Using cell cultures these often valuable plant-based compounds can be produced in controlled conditions. The thesis of Suvi Häkkinen shows that increased knowledge of regulation of biosynthesis is needed to be able to engineer the production of these compounds in cell cultures.

In this work, a functional genomics-based technology for the discovery of genes involved in plant secondary metabolism was developed. As a result, two novel genes were discovered, which were suggested to be involved in tobacco alkaloid biosynthesis. In addition, a novel alkaloid in tobacco cell cultures was isolated and it was shown to exist in two isomeric forms.
When a gene involved in the alkaloid metabolism in Egyptian henbane was overexpressed in tobacco hairy roots, it was shown that added hyoscyamine was efficiently converted into pharmaceutically more valuable scopolamine. In addition, a majority of the produced scopolamine was secreted out of the cells, which facilitates the product recovery. The transportation of secondary metabolites was also studied by overexpressing a yeast transporter gene in tobacco cell cultures, and it was suggested that PDR5-type transporters can be used to stimulate the secretion of secondary metabolites in plant cells.

Suvi Häkkinen will defend her thesis ”A functional genomics approach to the study of alkaloid biosynthesis and metabolism in Nicotiana tabacum and Hyoscyamus muticus cell cultures” at the Helsinki University of Technology (address: Kemistintie 1, Espoo, Finland) on 7 November 2008.

Further information:

VTT
Suvi Häkkinen
Research Scientist
tel. +358 20 722 4456
suvi.hakkinen@vtt.fi
Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Suvi Häkkinen | VTT
Further information:
http://www.vtt.fi/?lang=en
http://www.vtt.fi/vtt_show_record.jsp?target=julk&form=sdefe&search=59583

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>