Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thesis: How the plant cell synthesizes the pharmaceutical compounds?

05.11.2008
VTT’s Research Scientist Suvi Häkkinen (MSc, Tech) has studied in her thesis alkaloid biosynthesis and metabolism in two Solanaceae plants, tobacco and Egyptian henbane.
The studies bring new information about the functions of genes involved with the biosynthesis of plant secondary metabolites. The results can be used in developing production of valuable pharmaceuticals in plant cell cultures.

Plants produce small-molecular-weight compounds, which are used for example to attract pollinators and in various defence-related reactions. These secondary metabolites are often produced in low quantities in plants. Moreover, they are often structurally very complex molecules, and therefore their chemical synthesis is challenging.
Alkaloids, such as morphine and paclitaxel, are secondary compounds which are used as pharmaceuticals. Using cell cultures these often valuable plant-based compounds can be produced in controlled conditions. The thesis of Suvi Häkkinen shows that increased knowledge of regulation of biosynthesis is needed to be able to engineer the production of these compounds in cell cultures.

In this work, a functional genomics-based technology for the discovery of genes involved in plant secondary metabolism was developed. As a result, two novel genes were discovered, which were suggested to be involved in tobacco alkaloid biosynthesis. In addition, a novel alkaloid in tobacco cell cultures was isolated and it was shown to exist in two isomeric forms.
When a gene involved in the alkaloid metabolism in Egyptian henbane was overexpressed in tobacco hairy roots, it was shown that added hyoscyamine was efficiently converted into pharmaceutically more valuable scopolamine. In addition, a majority of the produced scopolamine was secreted out of the cells, which facilitates the product recovery. The transportation of secondary metabolites was also studied by overexpressing a yeast transporter gene in tobacco cell cultures, and it was suggested that PDR5-type transporters can be used to stimulate the secretion of secondary metabolites in plant cells.

Suvi Häkkinen will defend her thesis ”A functional genomics approach to the study of alkaloid biosynthesis and metabolism in Nicotiana tabacum and Hyoscyamus muticus cell cultures” at the Helsinki University of Technology (address: Kemistintie 1, Espoo, Finland) on 7 November 2008.

Further information:

VTT
Suvi Häkkinen
Research Scientist
tel. +358 20 722 4456
suvi.hakkinen@vtt.fi
Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Suvi Häkkinen | VTT
Further information:
http://www.vtt.fi/?lang=en
http://www.vtt.fi/vtt_show_record.jsp?target=julk&form=sdefe&search=59583

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>