Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermoresponsive polymers: Positive progress on antifouling

04.08.2014

Heat-responsive polymers that do not breakdown in water may lead to new antifouling coatings and enhanced oil recovery.

Thanks to the positively and negatively charged units in their monomers, zwitterionic polymers have a high affinity for water — a property known as hydrophilicity. This property helps prevent fouling, namely the build-up of contaminants. Current zwitterionic polymers are not effective in water as they use monomers such as commercially available acrylamide and methacrylates that tend to decompose and lose their electrostatic characteristics when wet.


Their high tolerance to salt, pH and temperature cause zwitterionic polymers to become viscous when subjected to high shear forces in brine, making them useful for marine antifouling applications.

© Alexcrab/iStock/Thinkstock

To solve this issue, a team led by Vivek Vasantha from the A*STAR Institute of Chemical and Engineering Sciences in Singapore has now developed zwitterionic polymers based on water-stable monomers that incorporate nitrogen-containing derivatives known as imidazoles[1]. The team introduced the zwitterions to readily accessible, hydrophobic polystyrene to boost its hydrophilicity in water by forming a hydration layer through electrostatic interactions and hydrogen bonding.

To synthesize the monomers, Vasantha’s team reacted styrene precursors with positively charged imidazoles before attaching the negatively charged sulfonate functional groups. The monomers produced polymers with intact zwitterionic properties, meaning that they retained their positive and negative charges.

These new imidazole-based polymers exhibited some novel solubility characteristics: unlike their conventional water-soluble counterparts, they swelled in water and dissolved only in highly concentrated brine. These differences stem from dipole–dipole interactions and the more hydrophobic nature of the new polymers compared to acrylamide and methacrylate.

With high tolerances to salt, pH and temperature, these polymers became increasingly viscous when subjected to higher shear forces in brine. This characteristic — similar to ‘silly putty’, which is malleable in one’s hands but is unchanged when hit with a hammer — makes the polymers attractive for enhanced oil recovery and marine antifouling coatings.

Another advantage of the new polymers is their reversible phase change: between 5 °C and 95 °C, the polymers formed gels that become clear fluids when heated above the so-called critical temperature in brine and that revert to their stable cloudy state on cooling.

“This phase transition results from the disruption of the equilibrium between salt, water and zwitterionic species,” says Vasantha. The polymer chains expand on heating and collapse below the critical temperature. The researchers can control the critical temperature by simply varying either the brine or polymer concentration. For example, the transition occurred at 20 °C at a low polymer concentration but at 40 °C at a higher polymer concentration.

“We are currently designing new zwitterionic polymers and copolymers with salt- and heat-responsive behavior for a wide range of applications, such as enhanced oil recovery, low-temperature protein separation and antifouling,” says Vasantha.

Reference

1. Vasantha, V. A., Jana, S., Parthiban, A. & Vancso, J. G. Water swelling, brine soluble imidazole-based zwitterionic polymers – synthesis and study of reversible UCST behavior and gel–sol transitions. Chemical Communications 50, 46–48 (2014).

Lee Swee Heng | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7009
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>