Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermoresponsive polymers: Positive progress on antifouling

04.08.2014

Heat-responsive polymers that do not breakdown in water may lead to new antifouling coatings and enhanced oil recovery.

Thanks to the positively and negatively charged units in their monomers, zwitterionic polymers have a high affinity for water — a property known as hydrophilicity. This property helps prevent fouling, namely the build-up of contaminants. Current zwitterionic polymers are not effective in water as they use monomers such as commercially available acrylamide and methacrylates that tend to decompose and lose their electrostatic characteristics when wet.


Their high tolerance to salt, pH and temperature cause zwitterionic polymers to become viscous when subjected to high shear forces in brine, making them useful for marine antifouling applications.

© Alexcrab/iStock/Thinkstock

To solve this issue, a team led by Vivek Vasantha from the A*STAR Institute of Chemical and Engineering Sciences in Singapore has now developed zwitterionic polymers based on water-stable monomers that incorporate nitrogen-containing derivatives known as imidazoles[1]. The team introduced the zwitterions to readily accessible, hydrophobic polystyrene to boost its hydrophilicity in water by forming a hydration layer through electrostatic interactions and hydrogen bonding.

To synthesize the monomers, Vasantha’s team reacted styrene precursors with positively charged imidazoles before attaching the negatively charged sulfonate functional groups. The monomers produced polymers with intact zwitterionic properties, meaning that they retained their positive and negative charges.

These new imidazole-based polymers exhibited some novel solubility characteristics: unlike their conventional water-soluble counterparts, they swelled in water and dissolved only in highly concentrated brine. These differences stem from dipole–dipole interactions and the more hydrophobic nature of the new polymers compared to acrylamide and methacrylate.

With high tolerances to salt, pH and temperature, these polymers became increasingly viscous when subjected to higher shear forces in brine. This characteristic — similar to ‘silly putty’, which is malleable in one’s hands but is unchanged when hit with a hammer — makes the polymers attractive for enhanced oil recovery and marine antifouling coatings.

Another advantage of the new polymers is their reversible phase change: between 5 °C and 95 °C, the polymers formed gels that become clear fluids when heated above the so-called critical temperature in brine and that revert to their stable cloudy state on cooling.

“This phase transition results from the disruption of the equilibrium between salt, water and zwitterionic species,” says Vasantha. The polymer chains expand on heating and collapse below the critical temperature. The researchers can control the critical temperature by simply varying either the brine or polymer concentration. For example, the transition occurred at 20 °C at a low polymer concentration but at 40 °C at a higher polymer concentration.

“We are currently designing new zwitterionic polymers and copolymers with salt- and heat-responsive behavior for a wide range of applications, such as enhanced oil recovery, low-temperature protein separation and antifouling,” says Vasantha.

Reference

1. Vasantha, V. A., Jana, S., Parthiban, A. & Vancso, J. G. Water swelling, brine soluble imidazole-based zwitterionic polymers – synthesis and study of reversible UCST behavior and gel–sol transitions. Chemical Communications 50, 46–48 (2014).

Lee Swee Heng | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7009
http://www.researchsea.com

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>