Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Theory on Genesis of Osteoarthritis Comes with Successful Therapy in Mice

22.05.2013
In the future, joint replacement surgery might be avoidable
Scientists at Johns Hopkins have turned their view of osteoarthritis (OA) inside out. Literally. Instead of seeing the painful degenerative disease as a problem primarily of the cartilage that cushions joints, they now have evidence that the bone underneath the cartilage is also a key player and exacerbates the damage. In a proof-of-concept experiment, they found that blocking the action of a critical bone regulation protein in mice halts progression of the disease.

The prevailing theory on the development of OA focuses on joint cartilage, suggesting that unstable mechanical pressure on the joints leads to more and more harm to the cartilage—and pain to the patient—until the only treatment option left is total knee or hip replacement. The new theory, reported May 19 in Nature Medicine, suggests that initial harm to the cartilage causes the bone underneath it to behave improperly by building surplus bone. The extra bone stretches the cartilage above and speeds its decline.

“If there is something wrong with the leg of your chair and you try to fix it by replacing the cushion, you haven’t solved the problem,” says Xu Cao, Ph.D., director of the Center for Musculoskeletal Research in the Department of Orthopaedic Surgery at the Johns Hopkins University School of Medicine. “We think that the problem in OA is not just the cartilage ‘cushion,’ but the bone underneath,” he adds.

Joints are formed at the intersection of two bones. To prevent the grinding and wearing down of the ends of the bones, they are capped with a thin layer of cartilage, which not only provides a smooth surface for joint rotation but also absorbs some of the weight and mechanical strain placed on the joint. The degeneration of this protective layer causes extreme pain leading to limited mobility.

Gehua Zhen, Courtesy of Nature Medicine

When placed in the bone (green) beneath the cartilage (red) of a rat’s knee joint, antibodies against the protein TGF-beta1 can prevent the damage caused by osteoarthritis. Left, without treatment; right, with treatment.

Cao says degeneration is most frequently initiated by instability in the load-bearing joints of the knee and hip caused by injury or strain, so athletes, overweight people and people whose muscles are weakened by aging are at highest risk of developing OA. The prevalence of the disease is rapidly increasing; it currently affects 27 million Americans and may double by 2030. The only treatment available is pain management, or surgical replacement of the arthritic joint with a prosthetic one.

Cao says that the lack of effective drugs or a complete understanding of the underlying process that causes OA to progress led his group to search for a different underlying cause. “We began to think of cartilage and the bone underneath it, called subchondral bone, as functioning as a single unit,” says Cao. “That helped us to see the ways in which the bone was responding to changes in the cartilage and exacerbating the problem.”

Using mice with ACL (anterior cruciate ligament) tears, which are known to lead to OA of the knee, the researchers found that, as soon as one week after the injury, pockets of subchondral bone had been “chewed” away by cells called osteoclasts. This process activated high levels in the bone of a protein called TGF-beta1, which, in turn, recruited stem cells to the site so that they could create new bone to fill the holes. Cao calls these pockets of new bone formation “osteoid islets.”

But the bone building and the bone destruction processes were not coordinated in the mice, and the bone building prevailed, placing further strain on the cartilage cap. It is this extraneous bone formation that Cao and his colleagues believe to be at the heart of OA, as confirmed in a computer simulation of the human knee.

With this new hypothesis in hand, complete with a protein suspect, the team tried several methods to block the activity of TGF-beta1. When a TGF-beta1 inhibitor drug was given intravenously, the subchondral bone improved significantly, but the cartilage cap deteriorated further. However, when a different inhibitor of TGF-beta1, an antibody against it, was injected directly into the subchondral bone, the positive effects were seen in the bone without the negative effects on the cartilage. The same result was also seen when TGF-beta1 was genetically disrupted in the bone precursor cells alone.

“Our results are potentially really good news for patients with OA,” says Cao. “We are already working to develop a clinical trial to test the efficacy of locally applied TGF-beta1 antibodies in human patients at early stages of OA.” If successful, their nonsurgical treatment could make OA — and the pain and debilitation it causes — halt in its tracks, he says.
Other authors of the report include Gehua Zhen, Xiaofeng Jia, Janet Crane, Simon Mears, Frederic Askin, Frank Frassica, Weizhong Chang, John Carrino, Andrew Cosgarea, Dmitri Artemov, Lee Riley, Paul Sponseller and Mei Wan of the Johns Hopkins University School of Medicine; Chunyi Wen, Jie Yao and William Weijia Lu of the University of Hong Kong; and Yu Li, Qianming Chen, Zhihe Zhao and Xuedong Zhou of Sichuan University.

This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK057501, DK08098).

Catherine Kolf | Newswise
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>