Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Theory on Genesis of Osteoarthritis Comes with Successful Therapy in Mice

22.05.2013
In the future, joint replacement surgery might be avoidable
Scientists at Johns Hopkins have turned their view of osteoarthritis (OA) inside out. Literally. Instead of seeing the painful degenerative disease as a problem primarily of the cartilage that cushions joints, they now have evidence that the bone underneath the cartilage is also a key player and exacerbates the damage. In a proof-of-concept experiment, they found that blocking the action of a critical bone regulation protein in mice halts progression of the disease.

The prevailing theory on the development of OA focuses on joint cartilage, suggesting that unstable mechanical pressure on the joints leads to more and more harm to the cartilage—and pain to the patient—until the only treatment option left is total knee or hip replacement. The new theory, reported May 19 in Nature Medicine, suggests that initial harm to the cartilage causes the bone underneath it to behave improperly by building surplus bone. The extra bone stretches the cartilage above and speeds its decline.

“If there is something wrong with the leg of your chair and you try to fix it by replacing the cushion, you haven’t solved the problem,” says Xu Cao, Ph.D., director of the Center for Musculoskeletal Research in the Department of Orthopaedic Surgery at the Johns Hopkins University School of Medicine. “We think that the problem in OA is not just the cartilage ‘cushion,’ but the bone underneath,” he adds.

Joints are formed at the intersection of two bones. To prevent the grinding and wearing down of the ends of the bones, they are capped with a thin layer of cartilage, which not only provides a smooth surface for joint rotation but also absorbs some of the weight and mechanical strain placed on the joint. The degeneration of this protective layer causes extreme pain leading to limited mobility.

Gehua Zhen, Courtesy of Nature Medicine

When placed in the bone (green) beneath the cartilage (red) of a rat’s knee joint, antibodies against the protein TGF-beta1 can prevent the damage caused by osteoarthritis. Left, without treatment; right, with treatment.

Cao says degeneration is most frequently initiated by instability in the load-bearing joints of the knee and hip caused by injury or strain, so athletes, overweight people and people whose muscles are weakened by aging are at highest risk of developing OA. The prevalence of the disease is rapidly increasing; it currently affects 27 million Americans and may double by 2030. The only treatment available is pain management, or surgical replacement of the arthritic joint with a prosthetic one.

Cao says that the lack of effective drugs or a complete understanding of the underlying process that causes OA to progress led his group to search for a different underlying cause. “We began to think of cartilage and the bone underneath it, called subchondral bone, as functioning as a single unit,” says Cao. “That helped us to see the ways in which the bone was responding to changes in the cartilage and exacerbating the problem.”

Using mice with ACL (anterior cruciate ligament) tears, which are known to lead to OA of the knee, the researchers found that, as soon as one week after the injury, pockets of subchondral bone had been “chewed” away by cells called osteoclasts. This process activated high levels in the bone of a protein called TGF-beta1, which, in turn, recruited stem cells to the site so that they could create new bone to fill the holes. Cao calls these pockets of new bone formation “osteoid islets.”

But the bone building and the bone destruction processes were not coordinated in the mice, and the bone building prevailed, placing further strain on the cartilage cap. It is this extraneous bone formation that Cao and his colleagues believe to be at the heart of OA, as confirmed in a computer simulation of the human knee.

With this new hypothesis in hand, complete with a protein suspect, the team tried several methods to block the activity of TGF-beta1. When a TGF-beta1 inhibitor drug was given intravenously, the subchondral bone improved significantly, but the cartilage cap deteriorated further. However, when a different inhibitor of TGF-beta1, an antibody against it, was injected directly into the subchondral bone, the positive effects were seen in the bone without the negative effects on the cartilage. The same result was also seen when TGF-beta1 was genetically disrupted in the bone precursor cells alone.

“Our results are potentially really good news for patients with OA,” says Cao. “We are already working to develop a clinical trial to test the efficacy of locally applied TGF-beta1 antibodies in human patients at early stages of OA.” If successful, their nonsurgical treatment could make OA — and the pain and debilitation it causes — halt in its tracks, he says.
Other authors of the report include Gehua Zhen, Xiaofeng Jia, Janet Crane, Simon Mears, Frederic Askin, Frank Frassica, Weizhong Chang, John Carrino, Andrew Cosgarea, Dmitri Artemov, Lee Riley, Paul Sponseller and Mei Wan of the Johns Hopkins University School of Medicine; Chunyi Wen, Jie Yao and William Weijia Lu of the University of Hong Kong; and Yu Li, Qianming Chen, Zhihe Zhao and Xuedong Zhou of Sichuan University.

This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK057501, DK08098).

Catherine Kolf | Newswise
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>