Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The yoga poses of ion channels

22.08.2016

International team decodes patterns of ion channel activity using novel stochastic approach

Scientists from the universities of Melbourne and Göttingen have gained new insights into the complex stochastic patterns of opening and closing observed in ion channels. The key is the molecular architecture of the protein that ion channels are made of.


Closed - open - closed: The different activity levels of an ion channel correspond to different yoga poses.

Yoga illustrations: Kennguru, Graphics: Siekmann

Proteins can rearrange their three-dimensional structure only in certain ways. By analysing a large set of time series data, the researchers were able to link the activity levels of an ion channel to the configurations of the channel protein. The study was published in the journal Proceedings of the Royal Society A.

Ion channels are tiny components of human cells that play important roles in all physiological processes occurring in the body. They form pores that allow electrically charged particles (ions) such as sodium, chloride and potassium to pass the cell membrane.

Through ion channels, nerve cells are charged like batteries, which allows them to communicate with other cells, for example, in the brain. The heartbeat is also initiated once per second by such an electrical signal. Defects or missing of certain ion channels can lead to diseases such as cystic fibrosis.

Via transforming their structure, ion channels open or close pores in the cell membrane. However, this opening and closing can be quite irregular.

“Quite often, an ion channel doesn’t seem to do anything for a long time. But then it suddenly shows its maximum level of activity before it switches off again”, explains Dr. Ivo Siekmann from Göttingen University’s Felix Bernstein Institute for Mathematical Statistics. “And in between there can be further intermediate activity levels.”

The key is the complex three-dimensional protein structure that forms the ion channel. “An ion channel can’t deform arbitrarily”, says Dr. Siekmann. “Similar to yoga, there are certain positions that work for an ion channel.” The activity levels of the ion channels correspond to different yoga poses. By combining several novel statistical and mathematical approaches, the scientists revealed how an ion channel transitions between these different yoga poses.

The study has several practical implications: Whereas designing pharmaceuticals that target ion channels has the potential to develop highly specific drugs, the results of the article indicate that only the average activity level, but not the actual opening and closing of the ion channel can be influenced.

“Switching between different activity levels provides a simpler explanation for some physiological processes”, says Dr. Siekmann. “Instead of the complicated and hectic opening and closing, they depend on the relaxed transitions between different yoga poses.”

Dr. Ivo Siekmann is a postdoc at the Felix Bernstein Institute for Mathematical Statistics (FBMS) in the Faculty of Mathematics and Computer Science at the University of Göttingen. He works in Prof. Dr. Axel Munk’s group, which develops statistical models and methods for the analysis of ion channels.

This research is funded through the DFG Collaborative Research Centre “Functionality controlled by organization in and between membranes“ and a Max Planck Fellowship at the Max Planck Institute for Biophysical Chemistry in Göttingen.

Original publication: Ivo Siekmann et al. Modelling modal gating of ion channels with hierarchical Markov models. Proceedings of the Royal Society A 2016. Doi: 10.1098/rspa.2016.0122.

Contact:
Dr. Ivo Siekmann
University of Göttingen
Faculty of Mathematics and Computer Science
Institute for Mathematical Stochastics
Goldschmidtstraße 7, 37077 Göttingen
Phone +49 551 39-172127
Email: ivo.siekmann@mathematik.uni-goettingen.de

Weitere Informationen:

http://www.stochastik.math.uni-goettingen.de/index.php?id=88&language=en

Thomas Richter | Georg-August-Universität Göttingen

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>