Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The yoga poses of ion channels


International team decodes patterns of ion channel activity using novel stochastic approach

Scientists from the universities of Melbourne and Göttingen have gained new insights into the complex stochastic patterns of opening and closing observed in ion channels. The key is the molecular architecture of the protein that ion channels are made of.

Closed - open - closed: The different activity levels of an ion channel correspond to different yoga poses.

Yoga illustrations: Kennguru, Graphics: Siekmann

Proteins can rearrange their three-dimensional structure only in certain ways. By analysing a large set of time series data, the researchers were able to link the activity levels of an ion channel to the configurations of the channel protein. The study was published in the journal Proceedings of the Royal Society A.

Ion channels are tiny components of human cells that play important roles in all physiological processes occurring in the body. They form pores that allow electrically charged particles (ions) such as sodium, chloride and potassium to pass the cell membrane.

Through ion channels, nerve cells are charged like batteries, which allows them to communicate with other cells, for example, in the brain. The heartbeat is also initiated once per second by such an electrical signal. Defects or missing of certain ion channels can lead to diseases such as cystic fibrosis.

Via transforming their structure, ion channels open or close pores in the cell membrane. However, this opening and closing can be quite irregular.

“Quite often, an ion channel doesn’t seem to do anything for a long time. But then it suddenly shows its maximum level of activity before it switches off again”, explains Dr. Ivo Siekmann from Göttingen University’s Felix Bernstein Institute for Mathematical Statistics. “And in between there can be further intermediate activity levels.”

The key is the complex three-dimensional protein structure that forms the ion channel. “An ion channel can’t deform arbitrarily”, says Dr. Siekmann. “Similar to yoga, there are certain positions that work for an ion channel.” The activity levels of the ion channels correspond to different yoga poses. By combining several novel statistical and mathematical approaches, the scientists revealed how an ion channel transitions between these different yoga poses.

The study has several practical implications: Whereas designing pharmaceuticals that target ion channels has the potential to develop highly specific drugs, the results of the article indicate that only the average activity level, but not the actual opening and closing of the ion channel can be influenced.

“Switching between different activity levels provides a simpler explanation for some physiological processes”, says Dr. Siekmann. “Instead of the complicated and hectic opening and closing, they depend on the relaxed transitions between different yoga poses.”

Dr. Ivo Siekmann is a postdoc at the Felix Bernstein Institute for Mathematical Statistics (FBMS) in the Faculty of Mathematics and Computer Science at the University of Göttingen. He works in Prof. Dr. Axel Munk’s group, which develops statistical models and methods for the analysis of ion channels.

This research is funded through the DFG Collaborative Research Centre “Functionality controlled by organization in and between membranes“ and a Max Planck Fellowship at the Max Planck Institute for Biophysical Chemistry in Göttingen.

Original publication: Ivo Siekmann et al. Modelling modal gating of ion channels with hierarchical Markov models. Proceedings of the Royal Society A 2016. Doi: 10.1098/rspa.2016.0122.

Dr. Ivo Siekmann
University of Göttingen
Faculty of Mathematics and Computer Science
Institute for Mathematical Stochastics
Goldschmidtstraße 7, 37077 Göttingen
Phone +49 551 39-172127

Weitere Informationen:

Thomas Richter | Georg-August-Universität Göttingen

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>