Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Venus flytrap: from prey to predator

06.05.2016

The carnivorous Venus flytrap recognizes its prey by taste and its cells share similarities with the human intestine. By exploiting common plant defense strategies, the flytrap has completely turned the table; it seeks out and consumes prey rather than being the meal itself.

The Venus flytrap (Dionaea muscipula) feeds on insects. It attracts a meal with its flower-like reddish color and ripe fruity smell on leaves converted to ambush traps. Seeking nectar, an insect will inevitably touch the highly sensitive sensory hairs on the leaves. This causes the trap to snap shut at lightning speed, imprisoning the prey.


A Venus flytrap with its turf of glands and single glands under the microscope.

(Picture: Sönke Scherzer)


A Venus flytrap with its turf of glands and single glands under the microscope. The three layers of a gland with a cartoon showing the three typical cell types.

(Pictures: Dirk Becker / Sönke Scherzer)

Dionaea must then decide how much energy to invest in the capture and consumption. It estimates the size of the prey by counting how often it touches the sensory hairs. Two touches and Dionaea activates a special hormone. With five or more stimuli, the plant produces enzymes and transport proteins for digesting and absorbing the prey.

But what genes make the trap a trap? How did the plant switch to animal food during evolution? Professors Rainer Hedrich (Biophysics) and Jörg Schultz (Bioinformatics) and their teams from Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, have unraveled this mystery. Their results are published in the scientific journal "Genome Research".

The flytrap is a leaf with root function

Surprisingly, the analyses revealed that the Dionaea trap not only had active genes typical of leaves, but also possessed genes normally specific to roots. But how can the trap be both a leaf and root at the same time? The scientists found the answer in the numerous glands that densely populate the trap surface.

The dome-shaped glands are made up of three cellular layers. The outer layer consists of cells responsible for excreting digestive enzymes. The second layer features cells whose envelopes are folded multiple times – similar structures that increase the surface area are found in the intestine of humans. "We assume that this is the place where nutrient uptake takes place," Hedrich supposes.

The cells of the third layer are densely packed with oil bodies. They could supply the fat for the energy used by the two outer cell layers – an idea supported by the gene activation pattern in traps that caught insects.

Trap also recognizes insects by their taste

Insects are protected by a chitin exoskeleton. The Venus flytrap cracks this protective shell using special digestion enzymes that are produced once the sensory hairs register a stimulus. It will ebb away if the hairs are not further stimulated. The researchers found that with repeated stimulation (whether by a trapped insect or experimenter), enzyme production increases for several days.

But what if the prey dies soon after capture? This is not a problem for the Venus flytrap: the presence of a chitin receptor assures continued production of enzymes – the plant is capable of "tasting" the insect. The chitin boosts the enzyme production even more than a mechanical stimulus.

From defending to attacking

So, the presence of chitin tells the Venus flytrap that food is available, causing the digestive juices to flow. "Contact with chitin normally means danger for a plant – insects that will eat it," Hedrich explains. Ordinarily, this triggers defense mechanisms.

"In the Venus flytrap these defensive processes have been reprogrammed during evolution. The plant now uses them to eat insects," the professor further adds. The JMU researchers came to this conclusion by looking at thale cress (Arabidopsis thaliana), a non-carnivorous plant, for exactly the same pattern of gene activation as found in the Venus flytrap when it catches its prey.

The greatest match is found when thale cress is injured mechanically or when insects feed on it. The physiological responses too are similar. Injuring thale cress generates an electrical impulse that activates an important defense hormone called jasmonate. Touching the Venus flytrap's sensory hairs activates the same hormone.

From that point on, the signal paths differ. To fend off insects, the hormone starts the production of substances that poison or deter insects, or make the leaves hard to digest. In this carnivorous plant, the hormone initiates the digestion of the meal and uptake of its nutrients.

Goal of "Carnivorom" EU project achieved

"We have thus achieved our goal of decoding the molecular origin of the Venus flytrap's carnivorous way of living," Hedrich reports with pleasure. He has pursued this goal since 2010 within the scope of the "Carnivorom" project funded by the European Union (EU) to the tune of 2.5 million euros (http://www.carnivorom.org).

"We are now going to compare the genome of carnivorous plants, their protocarnivorous precursors such as Plumbago to plants in which carnivorous and non-carnivorous development stages alternate such as in Triphyophyllum or the tropical liana Ancistrocladus, which has gone on to abandon the carnivorous lifestyle. Ultimately, we want to know what equipment a plants needs to eat and live off animals."

“Venus flytrap carnivorous life style builds on herbivore defense strategies“, Felix Bemm, Dirk Becker, Christina Larisch, Ines Kreuzer, Maria Escalante-Perez, Waltraud X. Schulze, Markus Ankenbrand, Anna-Lena Keller Van der Weyer, Elzbieta Krol, Khaled A. Al-Rasheid, Axel Mithöfer, Andreas P. Weber, Jörg Schultz, Rainer Hedrich. Genome Research, May 4th, 2016. DOI: 10.1101/gr.202200.115

Contact

Prof. Dr. Rainer Hedrich, Chair of Botany I (Molecular Plant Physiology and Biophysics), University of Würzburg, Germany, Phone: +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Weitere Informationen:

http://www.bot1.biozentrum.uni-wuerzburg.de/en/startseite/ Prof. Hedrich's homepage

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>