Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The usual suspects: A close-knit bacterial community cleans up blooming algae in the North Sea

15.04.2016

Every spring, algae bloom in the North Sea. In these blooms, different algae can come out on top each year. Nevertheless, within the bacteria subsequently degrading the algae, the same specialised groups prevail year after year.

Thousands and thousands of tiny algae inhabit every millilitre in the ocean. Their impact is massive: Together they produce as much oxygen and remove as much carbon dioxide from the atmosphere as land plants. However, the algae are short-lived. After their death, bacteria decompose them. In the process, the majority of the carbon dioxide previously taken up is released again.


Schematic view of the described processes

Max Planck Institute for Marine Microbiology, Manfred Schlösser

More than 5 million bacterial genes give a glimpse into microbial processes in the German Bight

To understand this aspect of the marine carbon cycle we thus need to investigate how the bacterial community in the ocean decomposes the algae. Therefore, scientists at the Max Planck Institute for Marine Microbiology in collaboration with the Biologische Anstalt Helgoland of the Alfred Wegener Institute conducted an extensive study of bacterial and algal dynamics off the island of Helgoland during the annual spring bloom.

The researchers led by Hanno Teeling, Bernhard Fuchs and Rudolf Amann from the Bremen Max Planck Institute analysed more than 11,000 data points over a period of four years. They analysed nearly 450 billion base pairs of the meta-genome of the resident bacterial communities.

Thereby, they gained information on more than 5 million bacterial genes – corresponding to roughly 200 times the genes of the human genome. There are so many data that the online open access publication, instead of conventional pictures, contains entire posters.

Specialised bacteria break down algal biomass

"From a previous study we know that the bacterial community changes as it degrades the algae spring bloom," says Hanno Teeling. Specialised bacterial groups accompany different stages of the bloom and gradually degrade most of the algal biomass.

“The present study reveals: It’s obviously far less important than we thought which algae just have their heyday. In different years, different types of algae can dominate the spring bloom ", explains Bernhard Fuchs. "Regardless, we have always observed a similar sequence of dominant groups of bacteria."

Apparently not the algae themselves but rather their components – above all chains of sugar molecules, the so-called polysaccharides – determine which bacteria will thrive. „It is thus possible that year after year the same bacteria appear, even though the algal bloom can be quite different”, Fuchs explains.

For example: Between 2009 and 2011 diatoms were most abundant in the spring bloom, while in 2012 silicoflagellates of the genus Chattonella prevailed. Nevertheless, the bacterial community that accompanied the bloom was very similar through all those years. This is particularly true within the group Flavobacteria, which seem to play a key role in the degradation of algal polysaccharides. During all four years of the study, Flavobacteria of the genera Polaribacter and Formosa were most abundant.

And it’s not only the bacterial groups always showing the same patterns. „Taking a detailed look at the bacterial genes and what they are actually responsible for, it became clear: It is always a similar temporal sequence of genes that regulate the degradation of certain polysaccharides," states Hanno Teeling. "This suggests that different algae in the spring bloom have similar or even the same polysaccharides."

New parts in the carbon puzzle

Next, the researchers from Bremen want to take a close look at the bacterial enzymes that degrade the algal polysaccharides. Which enzymes attack which polysaccharides? What are their exact structures? "From this we can deduce which the main algal polysaccharides are," explains Rudolf Amann. "And with this information we can then add another piece to the puzzle in our understanding of the carbon cycle of the ocean."

Original publication

Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms
Hanno Teeling, Bernhard Fuchs, Christin Bennke, Karen Krüger, Meghan Chafee, Lennart Kappelmann, Greta Reintjes, Jost Waldmann, Christian Quast, Frank Oliver Glöckner, Judith Lucas, Antje Wichels, Gunnar Gerdts, Karen Wiltshire, Rudolf Amann

Contact
Dr. Hanno Teeling / 0421 2028 976 / hteeling@mpi-bremen.de
PD Dr. Bernhard Fuchs / 0421 2028 935 / bfuchs@mpi-bremen.de
Prof. Dr. Rudolf Amann / 0421 2028 930 / ramann@mpi-bremen.de

or the press office
Dr. Manfred Schlösser / 0421 2028 704 / presse@mpi-bremen.de
Dr. Fanni Aspetsberger / 0421 2028 947 / presse@mpi-bremen.de

Participating institutes
Max Planck Institute for Marine Microbiology, Bremen, Germany
Alfred Wegener Institute for Polar and Marine Research, Helgoland and List auf Sylt, Germany

Weitere Informationen:

http://www.mpi-bremen.de
http://elifesciences.org/content/5/e11888v1

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>