Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Solution to a 50-Year-Old Riddle: why Certain Cells Repel one Another


When cells from the connective tissue collide, they repel one another – this phenomenon was discovered more than 50 years ago. It is only now, however, that researchers at the University of Basel have discovered the molecular basis for this process, as they report in the journal Developmental Cell. Their findings could have important implications for cancer research.

Fibroblasts are motile constituents of the connective tissue and also regulate its stiffness. Moreover, fibroblasts play an important role in malignant skin diseases such as melanoma. In research, they serve as a model system for studying cell migration.

A motile fibroblast: the protein srGAP2, which initiates the repulsion reaction, is heavily concentrated at the front of the cell (below, in red, yellow, and green).

© University of Basel, Prof. Pertz group

Signaling pathway identified

In the early 1950s, the English researcher Michael Abercrombie discovered that colliding fibroblasts repel one another and, in the process, change their direction of motion. He called this phenomenon ‘contact inhibition of locomotion’. Although individual proteins were identified as key factors in this process, the molecular basis of this reaction remained something of a puzzle.

In particular, it was unclear which repulsion signals were involved in the process, how these signals entered the cells from the outside, and how they influenced the cytoskeleton, which in turn regulates the cell’s movement.

Prof. Olivier Pertz’s research group at the University of Basel has now precisely answered these questions. The group identified a coherent signaling axis consisting of three proteins called Slit2, Robo4, and srGAP2 which operates as follows:

- The repulsion factor Slit2 binds to the receptor Robo4, whereupon the signal enters the cell’s interior and activates srGAP2.
- This molecule consequently inhibits the regulator Rac1, which coordinates the cytoskeleton.
- The inactivation of Rac1 causes the cell to retract – such that the two cells repel one another.

If the function of Slit2, Robo4, or srGAP2 is deactivated, colliding cells will stick to one another and will not separate as easily.

A ‘molecular bumper’

Intriguingly, the repulsion machinery is localized at the front – even in freely moving cells. By assembling this kind of a ‘molecular bumper’, the cell is prepared for collision with another cell. Where exactly this bumper must be positioned – namely, only in parts of the cell that are moving forwards – is determined by the cell’s geometry, which in turn is deciphered by srGAP2.

The integration of membrane curvature and repulsion signals ensures that cell-cell repulsion takes place at the correct location. This repulsive reaction could play an important role in cancer metastasis. This is supported by the fact that the expression of Slit and Robo isoforms is deregulated in several tumor types.

Original source

Rafael Dominik Fritz, Denis Menshykau, Katrin Martin, Andreas Reimann, Valeria Pontelli, and Olivier Pertz
SrGAP2-Dependent Integration of Membrane Geometry and Slit-Robo-Repulsive Cues Regulates Fibroblast Contact Inhibition of Locomotion
Developmental Cell (2015), doi: 10.1016/j.devcel.2015.09.002

Further information

Prof. Dr. Olivier Pertz, University of Basel, Department Biomedicine, tel. +41 61 267 35 41, email:

Christoph Dieffenbacher | Universität Basel
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>