Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The science behind swimming

15.09.2014

From whales to larvae, study finds common principles at work in swimming

At nearly 100 feet long and weighing as much as 170 tons, the blue whale is the largest creature on the planet, and by far the heaviest living thing ever seen on Earth. So there's no way it could have anything in common with the tiniest fish larvae, which measure millimeters in length and tip the scales at a fraction of a gram, right?

Not so fast, says L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, of Organismic and Evolutionary Biology, and of Physics.

Using simple hydrodynamics, a team of researchers led by Mahadevan was able to show that a handful of principles govern how virtually every animal -- from the tiniest fish to birds to gigantic whales propel themselves though the water. The study is described in a September 14 paper in Nature Physics.

"What we wanted to investigate was how the speed of an organism changes as a function of how large it is, how quickly it moves and how much it moves," Mahadevan said. "To resolve that in detail, however, is very complex, because there is a great deal of differences in morphology and what parts of the body different creatures use to swim. The question is: Is there anything in common across all these organisms? The answer, we found, is yes."

In an effort to uncover those common principles, Mahadevan working with a postdoctoral fellow in his group , Mattia Gazzola, and a colleague Mederic Argentina from the University of Nice, began by trying to unpack the physics of how different creatures swim.

"The traditional approach to swimming phenomena is to take a certain specimen and accurately characterize it via experiments and/or simulations, and try to generalize from there, but it is very hard to strip out specific biological effects from general principles," Gazzola said. "We instead thought that while swimmers exhibit a huge diversity in shapes and kinematics, at the end of the day they all live in the same media, water.

"Therefore we thought that if a unifying mechanistic principle existed, it had to lie in the constraints that the flow environment poses to all its inhabitants," he continued. "And this is a purely physical problem, much easier to solve since it is not affected by biological vagaries. What I like about this paper is that in one line of algebra we derived a compact formula that accounts for 50 years of experiments. This is an example of how powerful minimal modeling can be."

"The basic relationship we wanted to understand was how the input variables – namely the size of the organism, the amount an organism moves and how quickly it moves – control the output variable, which is effectively the speed at which it moves," Mahadevan explained. "What we found is that there is a specific relationship, which can be described by in terms of a simple scaling law with two limits."

The first, which corresponds to creatures moving at intermediate speeds, describes situations where the bulk of the resistance is caused by skin friction, because water "sticks" to the organism's body. At faster speeds, Mahadevan said, the resistance organisms face largely comes from pressure that builds up in front of and around them, which is described by the second limit.

"While it wasn't a surprise that the resistance changed at organisms moved faster, the fact that those challenges could be so simply described was interesting and provocative, because we are talking about organisms that range in size from a few millimeters to the size of a blue whale," Mahadevan said.

Armed with those observations, Mahadevan and colleagues turned to a host of empirical observations that had been made over the past 50-plus years. When those data were plotted on a graph, the researchers found that the swimming speed of virtually every organism, from fish larvae to frogs to birds, amphibians and even whales, could be described by one of the two equations.

The same also held true, Mahadevan said, when Gazzola created complex computer models to solve the governing equations of fluid dynamics to describe how different organisms swim.

"What is particularly interesting is that all the organisms essentially reach the hydrodynamic limits of performance," he said. "Our simple theory, which doesn't distinguish in any detailed way between something like a blue whale and fish larvae, except in the parameters of how large you are, much you move and how quickly you move, can describe all this diversity. That suggests there are general principles at work here."

Peter Reuell | Eurek Alert!
Further information:
http://www.harvard.edu/

Further reports about: Harvard Physics creatures larvae limits observations organism solve swimming

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>