Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The science behind swimming

15.09.2014

From whales to larvae, study finds common principles at work in swimming

At nearly 100 feet long and weighing as much as 170 tons, the blue whale is the largest creature on the planet, and by far the heaviest living thing ever seen on Earth. So there's no way it could have anything in common with the tiniest fish larvae, which measure millimeters in length and tip the scales at a fraction of a gram, right?

Not so fast, says L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, of Organismic and Evolutionary Biology, and of Physics.

Using simple hydrodynamics, a team of researchers led by Mahadevan was able to show that a handful of principles govern how virtually every animal -- from the tiniest fish to birds to gigantic whales propel themselves though the water. The study is described in a September 14 paper in Nature Physics.

"What we wanted to investigate was how the speed of an organism changes as a function of how large it is, how quickly it moves and how much it moves," Mahadevan said. "To resolve that in detail, however, is very complex, because there is a great deal of differences in morphology and what parts of the body different creatures use to swim. The question is: Is there anything in common across all these organisms? The answer, we found, is yes."

In an effort to uncover those common principles, Mahadevan working with a postdoctoral fellow in his group , Mattia Gazzola, and a colleague Mederic Argentina from the University of Nice, began by trying to unpack the physics of how different creatures swim.

"The traditional approach to swimming phenomena is to take a certain specimen and accurately characterize it via experiments and/or simulations, and try to generalize from there, but it is very hard to strip out specific biological effects from general principles," Gazzola said. "We instead thought that while swimmers exhibit a huge diversity in shapes and kinematics, at the end of the day they all live in the same media, water.

"Therefore we thought that if a unifying mechanistic principle existed, it had to lie in the constraints that the flow environment poses to all its inhabitants," he continued. "And this is a purely physical problem, much easier to solve since it is not affected by biological vagaries. What I like about this paper is that in one line of algebra we derived a compact formula that accounts for 50 years of experiments. This is an example of how powerful minimal modeling can be."

"The basic relationship we wanted to understand was how the input variables – namely the size of the organism, the amount an organism moves and how quickly it moves – control the output variable, which is effectively the speed at which it moves," Mahadevan explained. "What we found is that there is a specific relationship, which can be described by in terms of a simple scaling law with two limits."

The first, which corresponds to creatures moving at intermediate speeds, describes situations where the bulk of the resistance is caused by skin friction, because water "sticks" to the organism's body. At faster speeds, Mahadevan said, the resistance organisms face largely comes from pressure that builds up in front of and around them, which is described by the second limit.

"While it wasn't a surprise that the resistance changed at organisms moved faster, the fact that those challenges could be so simply described was interesting and provocative, because we are talking about organisms that range in size from a few millimeters to the size of a blue whale," Mahadevan said.

Armed with those observations, Mahadevan and colleagues turned to a host of empirical observations that had been made over the past 50-plus years. When those data were plotted on a graph, the researchers found that the swimming speed of virtually every organism, from fish larvae to frogs to birds, amphibians and even whales, could be described by one of the two equations.

The same also held true, Mahadevan said, when Gazzola created complex computer models to solve the governing equations of fluid dynamics to describe how different organisms swim.

"What is particularly interesting is that all the organisms essentially reach the hydrodynamic limits of performance," he said. "Our simple theory, which doesn't distinguish in any detailed way between something like a blue whale and fish larvae, except in the parameters of how large you are, much you move and how quickly you move, can describe all this diversity. That suggests there are general principles at work here."

Peter Reuell | Eurek Alert!
Further information:
http://www.harvard.edu/

Further reports about: Harvard Physics creatures larvae limits observations organism solve swimming

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>