Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The proper insulin rhythm is crucial


HZI and BRICS researchers use mathematical modelling to discover a possible cause of the development of early diabetes

The regulation of the sugar and lipid balance in the body is a vital function of the liver: In times without food intake, the liver produces glucose, a sugar, but quits producing glucose right after a meal, since glucose can now be obtained from the food in the bowels. The signal that makes the liver quit the release of glucose originates in the pancreas, i.e. the insulin hormone.

In Germany alone up to 6.7 million people suffer from diabetes.


Upon the manifestation of a diabetic disease, this signal is too late and reduced in intensity, which may result in a high blood sugar level after a meal. Scientists from the Helmholtz Centre for Infection Research (HZI) and the Braunschweig Integrated Centre of Systems Biology (BRICS) investigated these relationships with a mathematical model of liver cells and found that not only the overall quantity of the insulin signal, but the fact that insulin is released to the liver in a pulsatile manner is crucial.

Infections or systemic inflammations afflicting the pancreas may change this and thereby cause the first symptoms of diabetes. The scientists published their results in Nature Communications.

Like cardiovascular diseases and cancer, diabetes is one of the most widespread diseases of modern societies. The current German Health Report Diabetes presumes the number of afflicted individuals in Germany alone to be 6.7 million people, of which two million have not been diagnosed with the disease yet. In an early type 2 diabetes disease, the regulation of the glucose balance by the liver is impaired: Usually, the liver produces glucose only if no food intake takes place, in order to keep the glucose level constant.

Right after eating, the body obtains its glucose from the food. To make sure that the glucose levels do not get too high in this case, the pancreas releases the insulin hormone, which then inhibits the production of glucose in the liver. This is coupled to an increased production of lipids, i.e. to the regulation of the lipid balance.

However, the exact interplay of these regulatory mechanisms is not fully understood. Researchers from the HZI and the BRICS in Braunschweig developed a mathematical model of liver cells and used it to investigate the cellular impact of changes in the temporal pattern of insulin doses. "The model is based on values that were measured in mice. Our calculations were based on a healthy liver and we only varied the insulin signal," says Dr Gang Zhao, who is a scientist in the HZI department "Systems Immunology" of Prof Michael Meyer-Hermann at the BRICS.

In a healthy body, the so-called beta cells of the pancreas produce insulin in a five minute cycle. After a meal, the amplitude of these insulin pulses is increased within 30 minutes. "Infections or inflammations afflicting the pancreas can impair this increase in the amplitude of insulin pulses. In order to study the significance of this effect we changed the shape of the insulin pulses in our model, but kept the overall amount of the hormone unchanged," says Zhao.

They found: If the liver received, within 30 minutes after a meal, insulin pulses of the same shape that is typical of diabetes patients, this resulted in a disturbed sequence of signaling events, which finally leads to more glucose and more lipid production– just as in early diabetes.

The focus of the researchers was on two signal molecules in liver cells, called Akt and aPKC, by means of which insulin regulates the glucose and lipid balance. The molecule called aPKC – short for "atypical protein kinase C" – inhibits the production of glucose and enhances the production of lipids. The model calculations have shown that aPKC – unlike Akt – responds to changes in the shape of the insulin signal.

"The insulin pulse must possess the correct shape to up-regulate aPKC initially and then to switch it off again at the proper time. If aPKC is switched off too late or not at all, the body produces too much glucose and also increased amounts of fat tissue," says Michael Meyer-Hermann. "Accordingly, our model contributes to the understanding of the phenomenon called selective insulin resistance in diabetes patients, in which the liver produces both high blood sugar levels and high lipid levels after a meal."

The model calculations have shown how the dynamic shape of a signal – i.e. the insulin signal – can be crucial for its function, i.e. the regulation of the glucose and lipid balance in the liver. "If the shape of the five-minute pulses of insulin release in the pancreas is disturbed, even a healthy liver can develop insulin resistance – which is an early step of a diabetic disease," says Michael Meyer-Hermann. Moreover, the signal molecule aPKC promotes chronic inflammations if its activity is too high, which may be another corollary of the disturbed insulin rhythm.

"We are confident that the dynamic rhythm of signals is crucial for the function of the signal and that this applies to many other signaling pathways as well," says Meyer-Hermann. The model calculations were done in close cooperation with the HZI research groups "Model Systems for Infection and Immunity" of Prof Dagmar Wirth and "Systems-Oriented Immunology and Inflammation Research" of Prof Ingo Schmitz, in the scope of the "Metabolic Dysfunction and Human Disease" project funded by the Helmholtz Association.

Original publication:
Gang Zhao, Dagmar Wirth, Ingo Schmitz, Michael Meyer-Hermann: A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance. Nature Communications, 2017, DOI: 10.1038/s41467-017-01627-9

The press release and a picture are available on our website:

Helmholtz Centre for Infection Research:
Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.

Braunschweig Integrated Centre of Systems Biology:
The Braunschweig Integrated Centre of Systems Biology (BRICS) is a joint research facility of the HZI and the Technische Universität Braunschweig. It is the aim of BRICS to conduct research in areas such as infection, formation of agents, and development of biotechnology processes by means of systems biology.

Susanne Thiele, Press Officer
Dr Andreas Fischer, Editor

Helmholtz Centre for Infection Research
Press and Communications
Inhoffenstr. 7
D-38124 Braunschweig

Phone: +49 531 6181-1404

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Further reports about: HZI Helmholtz-Zentrum Infektionsforschung insulin resistance liver pancreas

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>